

Gilflo ILVA Flowmeter with Mass Flow Transmitter and Compact Stem DN250 and DN300 (10" and 12")

Description

The compact Gilflo ILVA flowmeter is a three element flowmeter. It operates on the spring loaded variable area principle and produces a differential pressure related to the flowrate. The ILVA pipeline element is connected to the Scanner 2000 steam mass flow transmitter via a compact stem and isolation manifold.

The compact ILVA flowmeter is supplied as separate elements (calibrated) as standard, although the pipeline element (ILVA) and Scanner 2000 are a matched pair.

The flowmeter can also be supplied as a fully assembled and calibrated system on request.

Sizes and pipe connections

DN250 and DN300 (10" and 12").

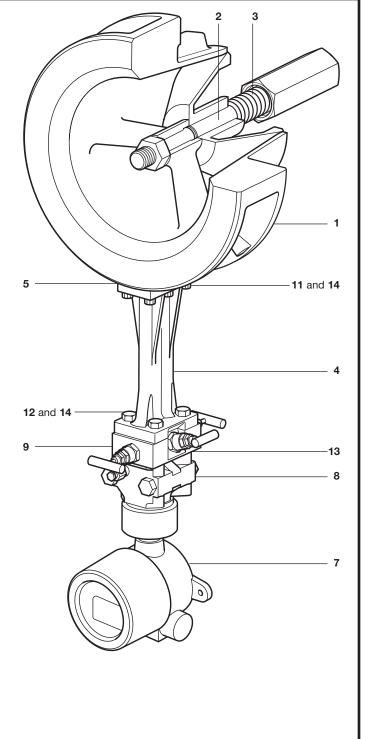
Suitable for fitting between the following flanges:

EN 1092 PN16, PN25 and PN40.

ASME (ANSI) B 16.5 Class 150, 300 and 600.

JIS 20 / KS 20.

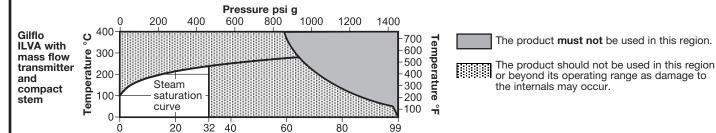
The Gilflo ILVA flowmeter should be installed in pipework manufactured to BS 1600 or ASME (ANSI) B 36.10 Schedule 40. For different pipe standards/schedules, downstream spool pieces with an equivalent internal diameter to BS 1600 or ASME (ANSI) B 36.10 Schedule 40 should be used. If this is not possible, please contact Spirax Sarco Limited.


Configuration

The Gilflo ILVA and Scanner 2000 are uniquely configured at the factory as a matched pair for a specific application. For correct operation they must be installed together. A label on the packaging gives the serial number of the matched products.

The product can be configured using an RS485 equipped PC with the supplied configuration software.

Materials


No	.Part	Material				
1	Body	Cast stainless steel S.316 (CF8M/1.4408)				
2	Internals	431 S29 / S303 / S304 / S316				
3	Spring	Inconel X750				
4	Compact stem	Cast stainless steel S.316 (CF8M/1.4408)				
5	Stem to Gilflo ILVA gasket	Corruseal - Stainless Steel Grade	e 321			
6	Stem to manifold gasket	Grafoil				
7	Enclosure	Cast aluminium				
	Enclosure	(painted with epoxy and polyurethane)				
8	Body	Stainless steel	AISI 316			
9	3-way manifold*	Stainless steel	AISI 316			
10	Fluid fill	Silicone oil (inside DP Cell (item	8))			
11	Compact stem to ILVA screws	Stainless steel				
12	Compact stem to Manifold screws	Stainless steel				
13	Manifold to MVT gasket	Grafoil				
14	Spring washer	Stainless steel				
*No	*Note: 5-way manifold available as an option.					

Local regulation may restrict the use of this product below the conditions quoted. Limiting conditions refer to standard connections only.

In the interests of development and improvement of the product, we reserve the right to change the specification.

Gilflo ILVA Flowmeter with Mass Flow Transmitter and Compact Stem DN250 and DN300 (10" and 12")

Body o	lesign conditio	ASME (ANSI) 600						
PMA	Maximum allo	wable pressure	99 bar g @ 38°C	(1 435 psi g @ 100°F)				
TMA	Maximum allo	wable temperature	400°C @ 59 bar g	(752°F @ 855 psi g)				
Minimum allowable			-29°C	(-20°F)				
temper	ature	Compact stem versions	0°C	(32°F)_				
DMO	Maximum ope	erating	99 bar g @ 38°C	(1 435 psi g @ 100°F)				
PMO	pressure	Compact stem versions	32 bar g @ 239°C	(464 psi g @ 462°F)				
Minimu	ım operating pı	ressure	0.6 bar g	(8.7 psi g)				
T1.40	Maximum ope	erating	400°C @ 59 bar g	(752°F @ 855 psi g)				
TMO	temperature	Compact stem versions	239°C @ 32 bar g	(462°F @ 464 psi g)				
Minimu	ım operating		-29°C	(-20°F)				
temperature Compact stem versions			0°C	(32°F)				
Note: F	or lower opera	ting temperatures consult	Spirax Sarco.					
Maxim	um viscosity		30 centipoise	30 centipoise				
ΔΡΜΧ	Maximum diff	erential pressure	498 m bar	(7.2 psi g)				
Design	ed for a maxim	ssure of: 142 bar g	(2 059 psi g)					

Performance

The Gilflo ILVA is used in conjunction with linearising electronics such as the M800 flow computer or M750 display unit.

Alternatively the output signal linearisation can be performed on an EMS/BEMS or equivalent.

Pressure bar g

Accuracy when used with Scanner 2000 or M750:

 $\pm 1\%$ of measured value from 5% to 100% of maximum rated flow.

 $\pm 0.1\%$ FSD from 1% to 5% of maximum rated flow.

Repeatability better than 0.25%

Turndown: up to 100:1

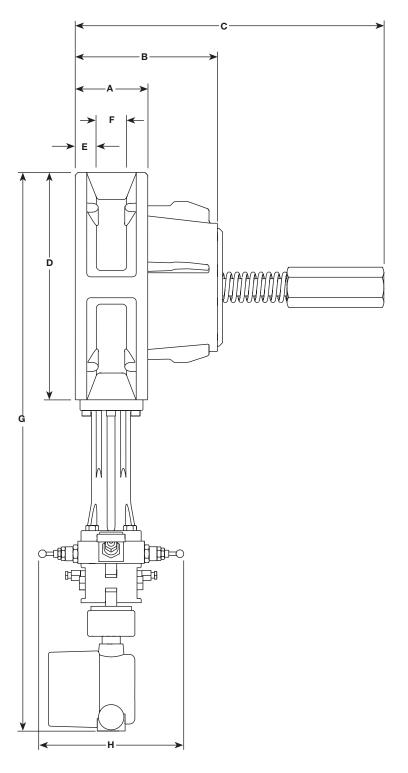
Caution: The Scanner 2000 mass flow transmitters can be configured at the factory to work with a single, specific Gilflo ILVA flowmeter. For correct operation the configured transmitter must always be installed with its allocated flowmeter. Labels on the packaging give the serial numbers of the matched products.

Pressure drop

The maximum pressure drop across the Gilflo ILVA pipeline unit is 498 m bar (200 ins water gauge) at maximum rated flow.

Flow capacity

To determine the capacity of the Gilflo ILVA for different fluids, it is necessary to calculate the equivalent water flowrate Q_E (in I/min) as described in Step 1, under the section 'sizing the Gilflo ILVA' then selecting the appropriate size of flowmeter from the Table under Step 2 overleaf.


Mass Flow Transmitter (Scanner 2000) Technical Data						
Range	Minimum 2" H₂0 (4.98 mbar)					
nalige	Maximum 200" H₂0 (498 mbar)					
	4 - 20 mA (expansion board required)					
Outputs	RS485 Modbus RTU slave (baud rate 300 to 38.4 K)					
	Solid state relay, configurable as pulse or alarm					
Power supply	6 V to 30 Vdc at 31 mA					
Pressure limits	155 bar					
Temperature limits	-40°C to 70°C (-40°F to 158°F)					
remperature mints	LCD contrast is reduced below -30°C (-22°F)					
Accuracy	±0.05% for Spans >10% of the URL					
Accuracy	±0.005 (URL/SPAN) for Spans <10% of the sensor					
Enclosure rating	IEC IP68					
Scanner certification	ATEX or CSA approved (see Scanner literature for details)					

TI-P337-59-US 12.12

Gilflo ILVA Flowmeter with Mass Flow Transmitter and Compact Stem DN250 and DN300 (10" and 12")

Dimensions / weights (approximate) in inches and pounds

Size	Α	В	С	D	E	F	G	Н	Weight	
10"	4.1	8.0	17.5	13.0	1.4	1.4	25.2	8.3	112	
12"	4.7	9.8	20.9	15.2	1.7	1.4	27.4	8.3	165	

TI-P337-59-US 12.12

Gilflo ILVA Flowmeter with Mass Flow Transmitter and Compact Stem DN250 and DN300 (10" and 12")

Sizing the Gilflo ILVA flowmeter

In order to determine the flow capacity of a Gilflo ILVA pipeline unit, it is necessary to calculate the equivalent water flowrate (Q_c) based on the anticipated actual flow (see Step 1).

The Table below is used to select the appropriate unit (steam only).

Step 1. Determine equivalent water flowrate (Q_) in I/min:-

	Mass flow units	Volumetric units
Liquids	$Q_{\text{E}} = \frac{q_{\text{m}}}{\sqrt{SG}}$	$Q_E = Q_L \sqrt{SG}$
Gases and steam actual flow conditions	$Q_{E} = q_{M} \sqrt{\frac{1000}{D_{F}}}$	$Q_{E} = Q_{F} \sqrt{\frac{D_{F}}{1000}}$
Gases standard conditions	$Q_E = Q_S \sqrt{\frac{D_S}{1000}} \times \frac{P_F}{P_S} \times \frac{P_F}{T_S}$	$Q_{E} = Q_{S} \sqrt{\frac{D_{S}}{1000}} x \frac{P_{S}}{P_{F}} x \frac{T_{F}}{T_{S}}$

Where:

Q_E = Equivalent water flowrate (litres/min)

 $q_m = Mass flowrate (kg/min)$

Q_L = Maximum liquid flowrate (litres/min)

Q_s = Maximum gas flowrate at standard conditions (litres/min)

Q_F = Maximum gas flowrate at actual flow conditions (litres/min)

SG = Specific gravity

D_s = Density of gas at standard conditions (kg/m³)

 $D_{\rm F}={\rm Density}$ of gas at actual flow conditions (kg/m³) $P_{\rm s}={\rm Standard}$ pressure: 1.013 bar a, 1.033 kg/cm² a, 14.70 psi a

P_F = Actual flow pressure in same absolute units as P_s

 T_s = Standard temperature (K) = °C + 273

 $T_{\rm F}$ = Actual flow temperature (K) = °C + 273

Step 2. Using the value of Q_E as determined in Step 1, select the correct size of the Gilflo ILVA flowmeter using the Table below. In practice, it will often be the line size that determines the choice of the flowmeter.

Flowmeter type	Max. Q _E litres/min	Maximum pressure drop Wg
DN250	7750	200
DN300	10975	200

Example: Determine which Gilflo pipeline unit is required to measure the flow of compressed air when:

1: Estimated maximum rate of flow = 28000 s m³/h at 7 bar g and 20°C. Note: Standard conditions = 1.013 bar a, 0°C giving a standard density of 1.29 kg/m³

2: Calculate Q_F from:

$$Q_{E} = Q_{S} \sqrt{\frac{D_{S}}{1000} x \frac{P_{S}}{P_{F}} x \frac{T_{F}}{T_{S}}}$$

$$Q_{E} = (28\,000\,x\,16.667)\,x\,\sqrt{\frac{1.29}{1\,000}\,x\,\frac{1.013}{8.013}\,x\,\frac{293}{273}}$$

Q_E = 6174 litres/min

So a DN250 ILVA is recommended.

Note: $1 \text{ m}^3/\text{h} = 16.667 \text{ litres/min}$

Sizing - Gilflo ILVA flowmeter minimum and maximum saturated steam flowrates in lb/hr Notes:

- 1. These capacities are based on a differential pressure across the flowmeter of 498 m bar H₂0 (200 Inches).
- 2. Minimum flow is 1% of maximum (100:1 turndown).
- 3. The table below is a guide only.

Size		QE	Steam pressure psig										
		QE	15	45	75	100	145	175	220	290	360	435	580
10"	Max	17,086	35,241	48,910	59,337	68,121	79,461	86,199	95,443	109,219	121,596	132,994	153,790
	Min	171	352	489	593	681	793	862	954	1,092	1,216	1,330	1,538
12"	Max	24,196	49,906	69,263	84,029	96,470	112,528	122,068	135,159	154,670	172,196	188,336	217,768
	Min	242	499	693	840	965	1,123	1,221	1,351	1,547	1,722	1,883	2,178

Safety information, installation and maintenance

For full details see the Installation and Maintenance Instructions supplied with the product.

Installation note:

The following main points are given here for guidance:

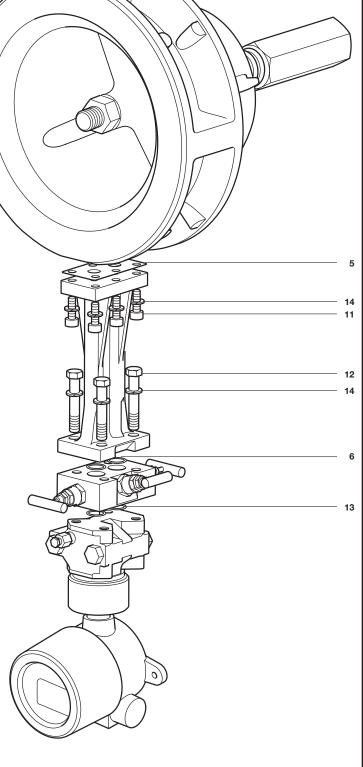
- 1. The Gilflo ILVA should be mounted with a minimum of 6 straight pipe diameters upstream and 3 downstream. No valves, fittings or cross sectional changes are permitted within these pipe lengths. Where an increase in nominal pipe diameter is required upstream of the flowmeter, the length of straight pipe should be increased to 12 diameters. Similarly, where a Gilflo ILVA is installed downstream of two 90 degree bends in two planes, a pressure reducing valve or a partially open valve, 12 upstream pipe diameters should be allowed.
- 2. It is important that the internal upstream and downstream diameters of pipe are smooth. Ideally seamless pipes should be used. It is recommended that slip-on flanges be used to avoid any intrusive weld beads on the internal diameter of the pipe.
- 3. Care should be taken to install the Gilflo ILVA concentrically in the line. If this is not done, flow measurement errors may occur.
- 4. The Gilflo ILVA should be mounted horizontally.
- 5. For steam applications, good basic steam engineering practices should be followed:
 - Correct line drainage through adequate trapping.
 - Good alignment and support of associated pipework.
 - Line size changes achieved by the use of eccentric reducers.

How to order example

1 off Spirax Sarco DN250 Gilflo ILVA flowmeter with compact stem, three way isolation manifold and saturated steam mass flow transmitter with ANALOG OUTPUT (4 - 20 mA) ATEX II 2 GD Ex d IIC T6 approved for installation between EN 1092 PN40 flanges. The body material is to be 316 stainless steel. The flow medium will be saturated steam at 10 bar g and the maximum flow will be 36 000 kg/h. TI-P337-59-US 12.12

Gilflo ILVA Flowmeter with Mass Flow Transmitter and Compact Stem DN250 and DN300 (10" and 12")

Spare partsThe spare parts available are detailed below. No other parts are supplied as spares.


Available spares

5, 6, 13 Gasket set Compact stem screws and spring washers 11, 12, 14

How to order spares

Always order spares by using the description given in the column headed 'Available spares' and state the size and type of equipment.

Example: 1 - Gasketsetfora Spirax Sarco DN250 Gilflo ILVA flowmeter with mass flow transmitter and compact stem suitable for fitting between EN 1092 PN16 connections.

TI-P337-59-US 12.12