



## INSTALLATION AND MAINTENANCE INSTRUCTIONS

IM-8-602-US

May 2009

# **V-BAR**



| Section 1 Product Introduction                       | 4           | Remo      |
|------------------------------------------------------|-------------|-----------|
|                                                      | 4<br>5      | C         |
| Features                                             |             | Section   |
| V-BAR 600 Series                                     |             | EZ Logi   |
| V-BAR /00 Series                                     |             | Interface |
| V-BAR 800 Series                                     | 5           | Keypad    |
| V-BAR 900 Series                                     | 5           | Altering  |
| Section 2 Inspection                                 | 6           | Altering  |
| Equipment                                            | 6           | Display   |
| I.D. Plate                                           | 6           | Flow      |
| Calibration Sheet                                    | 6           | Total     |
| EZ Logic Interface Map                               | 6           | Bar C     |
| Section 3 Guidelines                                 | 7           | Error     |
| Dining                                               | 7           | Configu   |
| Straight Dun Dequirements                            | 7           | Basic     |
| Mater L costion                                      | ·····/<br>0 | Dask      |
|                                                      | 0           |           |
| NI-r Martin-1                                        | 9           | 10        |
| INON-VERTICAL                                        | 9           | M         |
| Meter Alignment                                      | 9           | М         |
| Pipe Tapping                                         | 9           | M         |
| Overhead Clearance                                   | 10          | N         |
| Integral/Remote Mounting                             | 10          | Outp      |
| Integral Mounting                                    | 11          | A         |
| Remote Mounting                                      | 11          | O         |
| Pipe Connections                                     | 12          | Fr        |
|                                                      |             | Sc        |
| Section 4 Installation                               | 13          | Vo        |
| V-BAR 600 Series                                     | 13          | Di        |
| Hot Tapping                                          | 13          | Pu        |
| Cold Tapping                                         | 14          | Pu        |
| Insertion Depth Calculation                          | 15          | Tr        |
| Final Positioning                                    | 16          | Fluid     |
| Dimensional Outline                                  | 17          | Fl        |
| V-BAR 700 Series                                     | 18          | Re        |
| Cold Tapping                                         |             | De        |
| Insertion Depth Calculation Flanged Connection       | 19          | FI        |
| Insertion Depth Calculation 2" NPT Connection        | 19          | FI        |
| Final Positioning                                    | 20          | Sens      |
| Dimensional Outline                                  | 20<br>21    | Selis     |
| V B A D 000 Saries                                   | 21<br>22    |           |
| V-DAR 900 Selies                                     | 22<br>22    |           |
| Cold Terring                                         | 22          |           |
| Location Double Coloration                           | 25          | D:        |
|                                                      | 24          | Diagnos   |
| Final Positioning                                    |             | Rese      |
| Dimensional Outline                                  |             | 10        |
| Electrical                                           | 27          | Se        |
| Hardware Configuration                               |             | Pr        |
| Grounding                                            | 28          | Servi     |
| Meter                                                | 28          | Su        |
| Power Supply                                         | 28          | Si        |
| D.C. Power and Signal Wiring                         | 29          | Si        |
| Analog Output (JP1 installed or no jumpers)          | 30          | In        |
| Simultaneous Pulse and Analog Output (JP1 installed) | 30          | Vo        |
| Pulse Output Only (JP2 installed)                    | 30          | 4         |
| Pulse Output Only (no jumpers)                       | 30          | 20        |
| Pressure and Temperature Transmitter Wiring          | 31          | Sc        |
| 110 VAC Power and Signal Wiring                      | 31          | Se        |
| Analog Output (JP1 installed or no jumpers)          | 32          | Persona   |
| Simultaneous Pulse and Analog Output (JP1 installed) | 32          | Passy     |
| Pulse Output Only (JP2 installed)                    | 32          | Se        |
| · · · · · · · · · · · · · · · · · · ·                |             |           |

| Remote Wiring                  | 33                  |
|--------------------------------|---------------------|
| Section 5 F7 Logic Drogromming | 24                  |
| FZ Logic User Interface        | 34<br>34            |
| Interface Man                  | 54<br>35            |
| Keypad Activation              | 35                  |
| Movement Through Interface     |                     |
| Altering Real Number Data      | 37                  |
| Altering Preset Data           |                     |
| Display menu                   |                     |
| Flowrate                       |                     |
| Totalized Flow                 | 39                  |
| Bar Graph                      | 39                  |
| Error Code                     | 39                  |
| Accessing Programming Submenus | 39                  |
| Configure Group                | 40                  |
| Basic Menu                     |                     |
| Flow Unit                      | 40                  |
| Totalizer Unit                 | 40                  |
| Maximum Flow                   | 40                  |
| Minimum Flow                   | 40                  |
| M-Factor                       | 40                  |
| Noise Level                    | 41                  |
| Output Menu                    | 4.1                 |
| Analog Output                  | 41                  |
| Output Zero Time               | 41                  |
| Frequency/Pulse Output Setup   | 41                  |
| Scaled Frequency Output        | 42<br>42            |
| Direct Frequency Output        | 42                  |
| Direct Frequency Output        | 42<br>42            |
| Pulse -                        | 43                  |
| ruise +                        | 43<br>42            |
| Fluid Menu                     | 45<br>11            |
| Fluid Density                  | <del>44</del><br>11 |
| Reference Density              | <br>44              |
| Density Range                  | 44                  |
| Fluid Viscosity                | 44                  |
| Fluid Temperature              | 44                  |
| Sensor Menu                    |                     |
| Size                           | 44                  |
| Calibration Factor             | 44                  |
| Serial                         | 44                  |
| Tag Number                     | 44                  |
| Diagnose Group                 | 44                  |
| Reset Menu                     |                     |
| Totalizer Reset                | 44                  |
| Set Defaults                   | 45                  |
| Programmed Defaults            | 45                  |
| Service Menu                   | 45                  |
| Substitute Frequency           | 45                  |
| Simulated Analog Output        | 45                  |
| Simulated Frequency Output     | 45                  |
| Input Signal Amplitude         | 46                  |
| Vortex Frequency               | 46                  |
| 4 mA Calibration Value         | 46                  |
| 20 IIIA Califoration value     | 40<br>مدر           |
| Soltware Revision              | 40<br>16            |
| Darsonalize Group              | 40<br>17            |
| Password Menu                  | / +<br>17           |
| Set New Password               | +7<br>⊿7            |
| 501 10 W 1 d55 W 01U           | +/                  |

| HART Menu47                  |
|------------------------------|
| HART Enable/Disable47        |
| Display Menu                 |
| Flowrate47                   |
| Totalizer47                  |
| Bar Graph47                  |
| Error Code                   |
| Totalizer Reset47            |
| Display Time Constant47      |
| Scan                         |
| Scan Time                    |
| Flow Resolution47            |
| Exiting Programming Submenus |

| Section 6 – Service       | 49 |
|---------------------------|----|
| Trouble Shooting Chart    | 49 |
| Electronics Removal       | 50 |
| Sensor Functionality Test | 50 |
| V-BAR 600/60S             | 51 |
| Removal                   | 51 |
| Sensor Removal            | 52 |
| Integral Assembly         | 53 |
| Remote Assembly           | 54 |
| V-BAR 700                 | 55 |
| Removal                   | 55 |
| Sensor Removal            | 55 |
| Integral Assembly         | 56 |
| Remote Assembly           | 57 |
| •                         |    |

| V-BAR 910/960                   | 58 |
|---------------------------------|----|
| Removal                         | 58 |
| Sensor Removal                  | 59 |
| Integral Assembly               | 60 |
| Remote Assembly                 | 61 |
| Remote electronics assembly     | 62 |
| Internal Wiring                 | 63 |
| Flow and TEM Outputs            | 63 |
| Flow, Pressure and TEM Outputs  | 63 |
| Flow and Pressure Outputs       | 64 |
| Flow, RTD, and Pressure Outputs | 64 |
| Flow and RTD Outputs            | 65 |
| Flow Outputs                    | 65 |
| Pressure Transmitter            | 66 |
| Output Requirements             | 66 |
| Output Wiring Diagram           | 66 |
| Zero and Span Adjustments       | 67 |
| Dimensional Outline             | 68 |
| Temperature Transmitter         | 69 |
| Output Requirements             | 69 |
| Output Wiring Diagram           | 69 |
| Zero and Span Adjustments       | 70 |
| Dimensional Outline             | 71 |
|                                 |    |
| Section 7 - Ordering            | 72 |
| Model and Suffix Codes          | 72 |
|                                 |    |

# PRINCIPLE OF OPERATION



The V-BAR is an insertion vortex flowmeter. Unlike a full-bore flowmeter which replaces a section of pipe, an insertion meter is inserted into the pipe line and can be installed without process shutdown.

The V-BAR<sup>TM</sup> measures the volumetric flowrate by measuring the local velocity, at the sensor insertion depth, and converting it to an average velocity and then to an average flowrate.



The local velocity is determined by detecting the frequency at which vortices are alternately shed from the sensor's bluff body. The vortices pass the sensor wing causing a slight deformation in the wing which is detected by semiconductor strain gauges. These strain gauges generate an electrical frequency signal which is proportional to the local velocity.



Microprocessor based electronics amplify, filter and convert the sensor input into the volumetric flowrate. The electronics then provide a 4-20 mA and/or frequency output proportional to the flowrate. The flowrate can also be locally displayed and totalized in user selectable, engineering units.

- EZ Logic User Interface
- Smart transmitter/HART protocol
- Simultaneous 4-20 mA and frequency outputs
  - Line sizes from 3" to 80" (75 to 2000 mm)
- Negligible pressure loss

•

Optional, integral pressure and/or temperature transmitter

#### PRODUCT INTRODUCTION

Section 1

FEATURES

(continued)







- Temperature range from -40 to 400 °F (-40 to 204 °C)
- Hot tappable
- Bronze isolation valve included
- Retractable using screw thread rising stem design
- Mounting: 2" NPT with Thread-o-Let
- Integral scale for accurate sensor positioning
- Line pressures up to 2000 psig (138 barg)
- Temperature range from -40 to 500 °F (-40 to 260 °C)
- Not hot tappable
- Mounting: 2" NPT or 2" raised face 150#, 300#, 600#, or 900# ANSI flanges

- Line pressures up to 900 # flange rating
  Temperature range from -40 to 500 °F
  - Temperature range from -40 to 500 °F (-40 to 260 °C)
  - Hot tappable
  - Retractable using ACME, non-rising stem
  - All stainless steel construction
  - Integral scale for accurate sensor positioning
  - Mounting: 2" raised face 150#, 300#, 600#, or 900# ANSI flanges



#### EQUIPMENT

#### -

I.D. PLATE

Upon receiving your Spirax Sarco equipment, verify that all materials on the packing list are present. In addition, check for possible shipping damage, and notify the freight carrier or your Spirax Sarco representative if any has occurred.

A permanent identification plate is attached to your V-BAR flowmeter. This I.D. plate contains information on Model, Serial/W.O., date, pressure, temperature, and tag (if supplied by customer). Verify that this information is consistent with your metering requirements. This I.D. plate also shows applicable approvals.

| 110/220 VAC Powe                                                                                                     | r Supply                                                                 |                 |                               |                                                           |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------|-------------------------------|-----------------------------------------------------------|
| V-I                                                                                                                  | BAR™                                                                     | FIELD WIRING    | <u>†</u>                      |                                                           |
|                                                                                                                      | SHEDDING FLOWMETER                                                       |                 | 600 DIAGONAL HIGHW            | AY, LONGMONT, CO 80501                                    |
| MODEL No.:                                                                                                           |                                                                          |                 | OUTPUT:                       |                                                           |
| TAG No.:                                                                                                             |                                                                          |                 |                               | PSIG@100°F                                                |
| DATE CODE:                                                                                                           |                                                                          |                 | K FACTOR:                     |                                                           |
|                                                                                                                      | CAUTION:<br>OPEN CIRCUIT BEFORE                                          | 4               | SUPPLY:<br>110/220 VAC, 60 Hz | 1178-A                                                    |
| MADE                                                                                                                 | REMOVING EITHER COVER                                                    | 4               | MAX PROCESS TEMP 500°F (260   | <sup>8</sup> و (C)                                        |
| 24 VDC Power Sup                                                                                                     | REMOVING EITHER COVER                                                    | 4               | MAX PROCESS TEMP 500°F (260   | ₩<br>₩<br>₩                                               |
| 24 VDC Power Sup                                                                                                     | Ply<br>BAR <sup>™</sup>                                                  | ✓ Field Wirring | MAX PROCESS TEMP 500°F (260   |                                                           |
| 24 VDC Power Sup                                                                                                     | PLY<br>BAR <sup>TM</sup><br>(SHEDDING FLOWMETER                          | <pre></pre>     | MAX PROCESS TEMP 500°F (260   | р°С)<br>( ЕМСО<br>( AY, LONGMONT, CO 80501                |
| 24 VDC Power Sup<br>INSERTION VORTES                                                                                 | REMOVING EITHER COVER<br>ply<br>BAR <sup>TM</sup><br>(Shedding flowmeter | <pre></pre>     | MAX PROCESS TEMP 500°F (260   | (C)<br>(EMCO<br>(AY, LONGMONT, CO 80501                   |
| 24 VDC Power Sup<br>V-I<br>INSERTION VORTED<br>MODEL No.:<br>TAG No.:                                                | REMOVING EITHER COVER<br>ply<br>BAR™<br>(Shedding flowmeter              | <pre></pre>     | MAX PROCESS TEMP 500°F (260   | (C)<br>(EMCO<br>(AY, LONGMONT, CO 80501<br>PSIG@100°F     |
| 24 VDC Power Sup<br>24 VDC Power Sup<br>INSERTION VORTED<br>MODEL NO.:<br>TAG NO.:<br>SERIAL/W.O. NO.:<br>DATE CODE: | REMOVING EITHER COVER<br>ply<br>BAR <sup>TM</sup><br>(Shedding flowmeter | <pre></pre>     | MAX PROCESS TEMP 500°F (260   | ()°C)<br>(/ EMCO<br>VAY, LONGMONT, CO 80501<br>PSIG@100°F |

#### CALIBRATION SHEET

Make sure to save the calibration data sheet when unpacking your new meter. This is important for monitoring the performance of your meter.

| EZ LOGIC INTERFACE<br>MAP | This map shows how the meter has been programmed at the factory. If your application changes, contact your Spirax Sarco representative for an updated map. |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NOTE                      | For CE approved meter/installations, see notes regarding wiring, DC power and remote electronics.                                                          |

#### PIPING

**Straight Run Requirements** 

The minimum requirements for straight run piping are shown.



7

#### PIPING

(continued)

#### **Meter Location**

Recommended meter locations are shown.



#### MOUNTING

**Non-Vertical** 



If non vertical mounting is necessary, the deviation from vertical should not exceed  $90^{\circ}$ .

#### **Meter Alignment**



Ensure that the flowmeter is correctly aligned to avoid measurement errors.

#### **Pipe Tapping**



The pipe may be either hot or cold tapped. Hot tapping can be done under full flow conditions. Cold tapping requires process shutdown and line depressurization. For proper installation ensure that tap is at least 1.875" in diameter. Remove all burrs and/or weld slag around opening.

#### GUIDELINES

Section 3



#### **Overhead Clearance**



#### **Integral/Remote Mounting**



A minimum of 12" (305 mm) of overhead clearance is recommended for ease of installation.

Electronics can be mounted either integral or remote. The ambient temperature must be less than 140  $^\circ\mathrm{F}$  for integral mounting.

## MOUNTING

(continued)

#### **Integral Mounting**



**Remote Mounting** 



Sensor and electronics are mounted as one unit.

There are two options for remote mounting: Pipe or wall. The distance between the sensor and the electronics must not exceed 50'. If remote mounting is specified in an order, Spirax Sarco will supply 30' of cable and pipe mounting clamps.

#### GUIDELINES

Section 3

### MOUNTING

(continued)

#### **Pipe Connections**



**600 series:** The 600 series can be installed and removed without shutting down the process. A mounting kit which includes a 2" bronze isolation valve, a pipe nipple, and a Thread-o-Let comes standard with each meter.



**700 series:** Since the 700 series uses a Swagelok<sup>®</sup> fitting, it is non retractable and can only be installed and removed with process shut down. The 2" NPT connection requires a 2" Thread-o-Let for installation. The flanged connection requires a 2" Weld-o-Let and a 2" raised face, weld-neck flange with the same pressure rating as the meter flange. These mounting connections are not included with the meter, but may be ordered separately.



**900 series:** The 900 series can be installed or removed without process shut down. Installation requires a 2" Weld-o-Let and a 2" raised face, weld-neck flange with the same pressure rating as the meter flange. A 2", double flanged, fully ported ball or gate valve that adheres to the dimensions shown may be used as the isolation valve. These mounting connections are not included with the meter, but may be ordered separately.

#### V-BAR 600 SERIES

# Step 1 Step 2 Step 3 Step 3

**Hot Tapping** 

The flowmeter can be installed without process shutdown or line depressurization.

Hot tapping must be performed by a trained professional. Local state regulations often require a hot tap permit. The manufacturer of the hot tap equipment and/or the contractor performing the hot tap is responsible for providing proof of such a permit.

Weld 2" Thread-o-Let to pipe.

Attach 2" NPT pipe nipple.

Attach 2" bronze, isolation valve. Attach hot tap tools fully open valve and hot tap pipe. **Minimum hole opening required is 1.875 inches.** Close valve after hot tap tool has been retracted into the upper portion of the valve. Remove hot tap tool.

Connect meter to 2" isolation valve. Use teflon tape or PST on threads to improve seal and to prevent seizing. Make sure 1/4" bleed valve is completely closed. Fully open 2" bronze, isolation valve. If the meter is supplied with a pressure transmitter, open 1/4" bleed valve.

#### INSTALLATION

Section 4



V-BAR 600 SERIES (continued)

#### **Insertion Depth Calculation**



To properly position the sensor within the pipe, the scale reading must be calculated.

The scale reading is the value that the cursor should be set to on the depth scale.



Where:

Scale reading = The value to be set on the depth scale

- I = pipe diameter  $\div 2$  for pipes 10.5" and smaller
- I = 5" for pipes greater than 10
- E = The distance from the top of the stem housing to the outside pipe wall. This distance varies depending on how tightly the pipe nipples are screwed into the isolation valve and Thread-o-Let.
- Wt = The thickness of the pipe wall which can be determined by measuring the disk cut out of the pipe from the tapping procedure. This number can also be obtained from a piping handbook.

The sum of I + E + Wt is used as the depth scale setting. Example: A S-V-BAR 600 is to be installed on a 12" schedule 40 pipe. The following measurements have been obtained:

$$I = 5"$$
  
 $E = 12.5"$   
 $Wt = 0.406"$ 

Determine the scale reading...

Scale reading = I + E + WtScale reading = 5" + 12.5" + 0.406 = 17.906"

**Note:** The distance the fully retracted sensor travels before becoming visible has been figured into the factory adjustment of the depth scale.



#### INSTALLATION

Section 4

#### V-BAR 600 SERIES (continued)

#### Final Positioning



Carefully crank the retractor handle clockwise to insert the sensor down into the pipe until the calculated insertion depth figure on the depth scale lines up with the cursor. Warning: Do not force stem into pipe. If the handle stops turning, retract and remove the meter from the pipe line, checking to make sure the opening conforms with the guidelines listed in the mounting guidelines.

Align the retractor bar assembly so the flow direction is parallel to the pipe, pointed downstream.



Lock the stem in position by tightening the orientation set screw.

CAUTION: Do not allow the orientation of the meter or the insertion depth to change after insertion is complete. A change in insertion depth or alignment will cause inaccurate readings.

#### V-BAR 600/60S DIMENSIONAL OUTLINE



#### V-BAR 700 SERIES



The 700 series is non-retractable and must be cold tapped. Process shutdown and line depressurization is required for this procedure. There are two mounting connections available: flanged or 2" NPT.

Tap pipe. Minimum hole opening required is 1.875 inches.

Mount connections.

Retract the stem by manually pulling the orientation levers so the retaining ring is just below the base of the stem housing. Attach meter to mounting connection. For NPT connection only: Use teflon tape or PST on threads to improve seal and prevent seizing. If the meter is supplied with a pressure transmitter, open 1/4" bleed valve.

#### V-BAR 700 SERIES (continued)

#### Insertion Depth Calculation Flanged Connection



# Insertion Depth Calculation 2" NPT Connection



To properly position the sensor within the pipe, the insertion depth must be calculated.

#### Insertion Depth = B = C - I - E - Wt

Where:

I

Ι

- B = The insertion depth.
- C = The distance from the center of the sensor to the base of the condulet mount.
  - = Pipe diameter  $\div 2$  for pipes 10.5" and smaller.
  - = 5" for pipes greater than 10.5".
- E = The distance from the raised face of the flange to the outside pipe wall.
- Wt = The thickness of the pipe wall which can be determined by measuring the disk cut out of the pipe from the tapping procedure. This value can also be obtained from a piping handbook.

Example: A S-V-BAR 700 is to be installed on a 12" schedule 40 pipe. The following measurements have been obtained:

Determine the insertion depth B... B = C - I - E - Wt B = 14" - 5" - 4.5" - 0.406" = 4.094"

#### Insertion Depth = B = C - I - E - Wt

Where:

- = The insertion depth.
- C = The distance from the center of the sensor to the base of the condulet mount.
  - = Pipe diameter  $\div$  2 for pipes 10.5" and smaller.
  - = 5" for pipes greater than 10.5".
- E = The distance from the raised face of the flange to the outside pipe wall.
- Wt = The thickness of the pipe wall which can be determined by measuring the disk cut out of the pipe from the tapping procedure. This value can also be obtained from a piping handbook.

Example: A S-V-BAR 700 is to be installed on a 6" schedule 40 pipe. The following measurements have been obtained:

 $\begin{array}{rcl} C &=& 14''\\ I &=& (6.065''/2) = 3.033''\\ E &=& 4.5''\\ Wt &=& 0.280'' \end{array}$ 

Determine the insertion depth B... B = C - I - E - Wt B = 14" - 3.033" - 4.5" - 0.280" = 6.19" (continued)

# INSTALLATION Section 4

**V-BAR 700** 

SERIES

Final Positioning



Manually insert the stem into the pipe until the calculated insertion depth is obtained. Warning: Do not force stem into pipe. If the stem insertion is blocked, retract and remove the meter from the pipe line, checking to make sure the opening conforms with the guidelines listed in the mounting guidelines.

Align orientation levers parallel to the pipe with the arrow in the direction of flow.

Lock the stem in position by tightening the Swagelok<sup>®</sup> fitting. Note: Once the fitting has been tightened, the stem position becomes permanent and cannot be changed. Verify insertion depth prior to final tightening of the fitting.

#### Warning

Do not loosen the Swagelok  $^{\oplus}$  fitting under pressure. Doing so may cause serious injury.



V-BAR 700 DIMENSIONAL OUTLINE



#### V-BAR 900 SERIES



**Hot Tapping** 

Flowmeter can be installed without process shutdown or line depressurization.

Hot tapping must be performed by a trained professional. Local state regulations often require a hot tap permit. The manufacturer of the hot tap equipment and/or the contractor performing the hot tap is responsible for providing proof of such permit.

Weld Weld-o-Let to pipe.

Weld weldneck flange to Weld -o-Let.

Attach isolation valve. Fully open valve. Hot tap pipe. **Minimum hole opening required is 1.875 inches.** Close valve after hot tap tool has been retracted. Remove hot tap tool.

Connect meter to isolation valve. Make sure 1/4" bleed valve is completely closed. Fully open isolation valve. If the meter is supplied with a pressure transmitter, open 1/4" bleed valve.

V-BAR 900 SERIES (continued) **Cold Tapping** 

Process shutdown and line depressurization is required for this procedure.



#### V-BAR 900 SERIES (continued)

#### **Insertion Depth Calculation**



To properly position the sensor within the pipe, the scale reading must be calculated.

#### Scale Reading = I + E + Wt

#### Where:

- Scale reading = The number to be set on the depth scale by the  $1.0 \rightarrow$ )
- I = Pipe diameter  $\div 2$  for pipes 10.5" and smaller.
- I = 5" for pipes greater than 10.5".
- E = Distance from the raised face of the flange to the outside pipe wall.
- Wt = The thickness of the pipe wall which can be determined by measuring the disk cut out of the pipe from the tapping procedure. This number can also be obtained from a piping handbook.

Example: A S-V-BAR 910 is to be installed on a 12" schedule 40 pipe. The following measurements have been obtained:

$$I = 5"$$
  
 $E = 12.5"$   
 $Wt = 0.406"$ 

Determine the scale reading...

Scale reading = I + E + Wt Scale reading = 5" + 12.5" + 0.406" Scale reading = 17.906"

Loosen the two packing gland nuts on the stem housing of the meter.

#### **Final Positioning**



V-BAR 900 SERIES (continued)

#### **Final Positioning**



Turn handwheel clockwise to insert the stem into the pipe. Do so until the calculated scale reading lines up with the **1.0 arrow** on the retractor bar assembly. Warning: Do not force stem into pipe. If the stem insertion is blocked, retract and remove the meter from the pipe line, checking to make sure the opening conforms with the pipe tapping guidelines.



Align the sensor by using the orientation lever so the flow direction is parallel to the pipe and pointed downstream.

Tighten the packing gland nuts to stop leakage around the stem. Do not torque over 25 ft-lbs.

Lock the stem into position by tightening the orientation lock screw.

CAUTION: Do not allow the orientation of the meter or the insertion depth to change after insertion is complete. A change in insertion depth or alignment will cause inaccurate readings.

#### INSTALLATION

Section 4

#### V-BAR 910/960 DIMENSIONAL OUTLINE



#### ELECTRICAL

#### General

To avoid personal injury or property damage from electrical shock or contact with live electrical systems, or from combustible material or explosive gases which can be ignited by electrical arcing, wiring and conduit must be installed in accordance with national, local laws, standards, codes, and industry practices.

#### **Hardware Configuration**

The flowmeter hardware is factory configured for each specific application. Additional configuration should not be required unless application changes. Jumper position JP3 selects fluid type. JP3 should be installed for gas applications and removed for liquid applications. Jumper positions JP1 and JP2 indicate pulse output configuration. JP1 is installed at the factory. These jumpers are located on the filter board (the base board of the electronic stack).



Jumper configuration can be accomplished by exposing the filter board located in the flow transmitter condulet. Disassembly should be done using proper ESD precautions. To get to the filter board, remove condulet cap, then unscrew the display board screws. Gently remove the display board form the electronics stack. Unscrew hex standoff bolts to remove electronics stack from filter board.



#### ELECTRICAL

(continued)

Grounding



#### Meter

To ensure proper electrical noise rejection, connect ground strap (size 8 AWG or larger wire) from the ground screw attached to the outside of the electronics enclosure to a known earth ground (not the pipe).



#### **Power Supply**

Shielded cable should be at least 18 AWG or larger for proper power and signal wiring. Connect shield wire from shielded cable to earth ground at power supply. Insulate other end of shield wire from electrical condulet at the meter.

## ELECTRICAL

(continued)

#### **D.C.** Power and Signal Wiring

The V-BAR may be operated using a 24 volt power supply. It is unique in its ability to supply both the 4-20 mA output and the pulse output simultaneously. The installation of jumpers JP1 and JP2 on the filter board control the output selection. JP1 is installed at the factory.

The field wiring terminal for power and signal wiring may be accessed by removing the field wiring condulet.





#### Analog Output (JP1 installed or no jumpers)

Scalable 4-20 mA output, 2 wire principle. Load resistor may be installed on supply or return line. Permissible load resistance values shown in graph.

Note: Maximum voltage is 30 V with pressure transmitter option.

#### **ELECTRICAL**

(continued)



123456789

V<sub>pulse</sub>

MADE ΝL

+ | Ρ



The diagram shows simultaneous 4-20 mA and pulse output for a high impedance electronic counter. The load resistor is in the supply line. Pulse output will vary from:

0-1 V to 
$$V_{\text{pulse}} = V_{\text{s}} - (I \bullet R_{\text{load}})$$

Note: Load resistor may also be placed in the return line. Pulse output will vary from  $V_{pulse} = (I \cdot R_{load})$ +1 to V<sub>s</sub>.

where:

V<sub>s</sub>

 $V_{pulse} = output voltage$   $V_s = power supply voltage$  I = current (4-20 mA)= load resistance

#### Pulse Output Only (JP2 installed)

This option is for pulse output only using a low impedance electromechanical counter.  $V_{pulse}$  will vary from 0-1 V to

Note:

$$R_{c} \ge 6800 \left( \frac{V_{c}}{V_{s} - V_{c}} \right)$$
$$V_{pulse} = V_{s} \left( \frac{R_{c}}{R_{c} + 6800} \right)$$

= output voltage

 $V_{pulse} \\ R_{c}^{c} \\ V_{s}$ = counter impedance

= power supply voltage

= minimum required voltage to trip counter

\

#### Pulse Output Only (No Jumpers)

V.

This is an open collector pulse output using a high impedance electronic counter.  $V_{pulse}$  will vary from 0-1 V to 24V.

Note:

$$V_{pulse} = V_{s} \left( \frac{R_{c}}{R_{c} + R_{pulse}} \right)$$
$$R_{pulse} \ge \left( \frac{V_{s}}{0.16} \right)$$



# ELECTRICAL (continued)

#### Pressure and Temperature Transmitter Wiring

Power and signal wiring may be accomplished by removing the field wiring condulet cap to expose the field wiring terminal block. This terminal block will allow connections to be made for flow, pressure, and temperature outputs. Refer to the previous section on 24 VDC power and signal wiring for appropriate load resistance and power supply values. Pressure and temperature transmitters are scaled to the appropriate ranges at the factory. If span and zero adjustments need to be made, see the service section.





## ELECTRICAL

(continued)

#### **110 VAC Power and Signal Wiring**

The V-BAR may be operated using 110 VAC power supply. The power supply converts the 110 VAC to 24 VDC. It is unique in its ability to supply both the 4-20 mA output and the pulse output simultaneously. The installation of jumpers JP1 and JP2 on the bottom of the 110 V power supply control the output selection. JP1 is installed at the factory.

#### Analog Output (JP1 installed or no jumpers)

Scalable 4-20 mA output, 2 wire principle. Load resistor may be installed on supply or return line. R<sub>load</sub> must be 250.



GND

#### Simultaneous Pulse and Analog Output (JP1 installed)

Simultaneous 4-20 mA and pulse output for a high impedance electronic counter. Load resistor in the supply line. Pulse output will vary from:

0-1 V to 
$$Vp_{ulse}$$
 24 - (I • Rl<sub>oad</sub>)

 $Vp_{ulse} =$  pulse output amplitude I = current (4-20 mA) where: Rl<sub>oad =</sub> load resistance (250)



This option is for pulse output only.  $\rm V_{pulse}$  will vary from:

$$0 - 1$$
 V to  $V_{pulse} = 24 \left( \frac{R_c}{R_c + 6800} \right)$   
Note:  $R_c \ge 6800 \left( \frac{V_c}{24 - V_c} \right)$ 

Note:

.ΛΛ.

1V to 
$$V_{pulse} = 24 \left( \frac{R_c}{R_c + 6800} \right)$$
  
te :  $R_c \ge 6800 \left( \frac{V_c}{24 - V_c} \right)$ 

Where:

 $V_{pulse}$  = pulse output amplitude  $R_{c}$  = counter impedance  $V_{c}$  = minimum required volta = minimum required voltage to trip counter



## ELECTRICAL (continued)

#### **Remote Wiring**

Output wiring from the remote electronics is identical to the integral output wiring. However, the wiring from the remote electronics condulet to the electrical junction box must be performed in the field. Connect the remote cable to the terminal block in the junction box as shown. If nonconductive conduit is used attach a ground strap from the ground screw on the remote electronics condulet to the ground screw on the sensor condulet. If the remote cable is cut to a shorter length, insulate shield with tape at electrical junction box.

Note: If remote mounting is required with a pressure and/or temperature transmitter, two power supplies are required for operation. One for the remote flow transmitter and one for the pressure and/or temperature transmitter.



#### EZ LOGIC USER INTERFACE

#### General

The EZ Logic User Interface is a menu driven interface that consists of the top display menu and nine programming submenus. The submenus are called: **Basic, Output, Fluid, Sensor, Reset, Service, Password, HART**, and **Display**. These submenus are grouped by functionality. The first is the Configure group, the second is Diagnose, and the third is Personalize. The Configure group is comprised of the Basic, Output, Fluid, and Sensor submenus. These submenus configure the flowmeter for operation in a specific application. The Diagnose group is comprised of the Reset and Service submenus, which contain information relating to flowmeter maintenance. Finally, the Personalize group is comprised of the HART and Display submenus. This group allows the user to customize the flowmeter by choosing display parameters or changing the password. Each group has it's own icon; Configure "C", Diagnose "D", and Personalize "P". The user can identify the location within the interface map from the displayed icon in the upper or lower, right hand corner.





#### **INTERFACE MAP**



#### **KEYPAD ACTIVATION**





Keypad can be manipulated in two different ways. The first way is to remove the condulet cap and depress the membrane keys using your fingers.

The second method of keypad manipulation is to use the magnet wand. The keys may be activated through the condulet cap, without sacrificing the explosion proof rating. To activate keys place magnet wand on the targeted area and remove. Note: The magnet wand is only supplied as a standard tool with the explosion proof meters.

Caution: Do not place magnet wand near magnetically sensitive items such as: credit cards, card key, etc...

## MOVEMENT THROUGH INTERFACE



The interface was designed to be simple. For example; if you would like to go right across the column headings press the right arrow key.

To move up or down through each column use the up or down arrow keys. Note: Each column is setup as a loop. Once you reach the bottom (using the down arrow key) depressing the same key will move you to the column heading.

The enter key is used to exit the programming submenus.
#### ALTERING REAL NUMBER DATA

Keys are also used to alter data within a selected block in the programming mode. Note: The example shown below is only a specific example. Refer to submenu descriptions for detailed information.



## ALTERING PRESET DATA

Some data in the programming submenus have default selection values. This example describes flowrate unit selection. For complete list of specific submenu options refer to submenu descriptions.



#### **DISPLAY MENU**



## ACCESSING PROGRAMMING SUBMENUS

In order to enter the programming submenus the user must hold down right arrow key for 2 seconds. The user must then enter the correct password to access the submenus. If the correct password is entered the display will read "Full Access". If an incorrect password is entered the display will read "Read Only" and the user will not be able to alter the programming. The flowmeter comes from the factory without a password so once the right arrow key is held down for 2 seconds "Full Access" will automatically be permitted. Refer to the Personalize group to change the password. Note: When in the programming submenus the meter will be "off line". The last values of the totalizer and the flowrate will be stored until the meter is returned to the display menu.



ſ

## **CONFIGURE GROUP**



This value will be displayed as the units for flowrate in the display menu. Also, this will be the engineering units used to set the max flow and min flow for scaling the 4-20 and the frequency output. Up to scroll through the volume units, down to scroll through time units. Possible flow units : gallons, bbl, cm<sup>3</sup>, liters, m<sup>3</sup>, lb, tons, grams, kilograms, metric tons, standard ft<sup>3</sup>, normal m<sup>3</sup>, ft<sup>3</sup>, and in<sup>3</sup>. Possible time units: minutes, hours, days, and seconds.

This value will be displayed as units for the totalizer in the display mode. A multiplier may also be selected in order to slow the counting of the totalizer. Press the up arrow key to scroll through multipliers, down arrow key to scroll through units. Possible units: gallons, bbl,  $cm^3$ , liters,  $m^3$ , lb, tons, grams, kilograms, metric tons, standard ft<sup>3</sup>, normal m<sup>3</sup>, ft<sup>3</sup>, and in<sup>3</sup>. Possible multipliers: x1, x10, x100, x10<sup>3</sup>.

Maximum flow is entered in the Flow Units previously programmed. This value sets the 20 mA point, and the scaled frequency output to correspond to Freq Max.

Minimum flow is entered in the Flow Units previously programmed. This value sets the cutoff point where the output drops to 4 mA and/or the scaled frequency output drops to 0 Hz. This value can not be programmed below the published minimum flowrate of the meter.

M-factor is a value that sets the signal input filter. The M-factor has been factory programmed during calibration. However for best performance the M-factor can be set during actual flow conditions within a specific application. If the value is set to 0000, the meter will perform an automatic M-factor setting. This will take approximately 5 seconds to perform. If an automatic setting is made, the flowmeter must be operating at least 1/10 of the meter's maximum flowrate (3.2 ft/sec for liquids, 300 ft/sec for gases). If the sensor input signal is too weak (due to the flowrate not being at least 1/10 of the meter's maximum flowrate) the electronics will not auto set the M-factor. The display will read "Too Low NOT SET" (for 1 second) and the previous M-Factor will be displayed.

#### The nominal M-factor for all V-BAR flowmeters is 150.



41

ing the V-BAR to the flow processor, select Vortex

Frequency as OUTPUT SETUP.

# **CONFIGURE GROUP**



#### **CONFIGURE GROUP**



44

EZ LOGIC<sup>™</sup> PROGRAMMING

Section 5

## **CONFIGURE GROUP**



#### **DIAGNOSE GROUP**



| Service<br>↓ Menu D | Substitute<br>Frequency          | Sub freq<br>0000 Hz  | This frequency will simulate the vortex shedding<br>frequency for the display and the output. Note: Value<br>must be set to zero before meter returns to actual<br>frequency input. |
|---------------------|----------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | Simulated Analog<br>Output       | 4-20 Out<br>0.000%   | Simulation of the analog output 0% = 4 mA and 100%<br>= 20 mA. Can be set at any value between 0 and 100%.<br>Operates only while in this display.                                  |
|                     | Simulated<br>Frequency<br>Output | Freq out<br>00000 Hz | Simulation of the frequency output, 0-10,000 Hz.<br>Only possible if pulse output is selected to be either<br>scaled or vortex frequency. Operates only while in<br>this display.   |

# **DIAGNOSE GROUP**





# EXITING PROGRAMMING SUB-MENUS

The programming submenus can be exited only at the top of each submenu heading, by pressing the enter key. The display will read "Exit". Toggle to "Yes" with the up or down arrow key, press enter. If you have made any changes and want to save them, press enter when prompted by "Save Changes", if not toggle to "No" and press enter.



SERVICE

# TROUBLE SHOOTING CHART

| Symptom               | Output       | Error | Possible Reason                | Solution                                             |  |  |  |  |
|-----------------------|--------------|-------|--------------------------------|------------------------------------------------------|--|--|--|--|
| Symptom               | Signals      | Code  |                                | Solution                                             |  |  |  |  |
| Blank display         | 0-4 mA       |       | Supply voltage                 | Check supply voltage on the terminal board           |  |  |  |  |
|                       | or           |       |                                | of the meter.                                        |  |  |  |  |
|                       | 0 Hz         |       |                                | Check resistance of the current loop.                |  |  |  |  |
|                       |              |       |                                | Refer to analog output section for permissible value |  |  |  |  |
|                       |              |       | Defective Electronics          | Replace electronics stack in the meter.              |  |  |  |  |
| Displays flow without | <4 mA        |       | Current output deselected      | Turn 4-20 mA to "On" in output menu.                 |  |  |  |  |
| output signal         | 0 Hz         |       | Frequency output deselected    | Select frequency/pulse output option in output menu. |  |  |  |  |
| No flow display       | 4 mA         | 1     | Minimum flow setting too high  | Reduce minimum flow in basic menu.                   |  |  |  |  |
| or output at flow     | or           |       | M—factor set too low           | Auto set noise level in Basic menu.                  |  |  |  |  |
|                       | 0 Hz         | 1, 2  | No signal from sensor          | Check resistance across sensor                       |  |  |  |  |
|                       |              |       | No flow in line                | wires: see sensor functionality section.             |  |  |  |  |
| Shows flow without    | Undefined    |       | Pipe vibration or media        | Auto set noise level in Basic menu.                  |  |  |  |  |
| flow in pipe          |              |       | pulsations disturbing the flow | Increase minimum flow until                          |  |  |  |  |
|                       |              |       | signal                         | output goes to 4 mA or 0 Hz.                         |  |  |  |  |
|                       |              |       |                                | Support pipe to reduce vibration.                    |  |  |  |  |
|                       |              |       |                                |                                                      |  |  |  |  |
| Unstable flow         | Unstable     |       | Pipe vibration and/or flow     | Auto set M-factor in Basic menu.                     |  |  |  |  |
| signal                |              |       | pulsations disturb             |                                                      |  |  |  |  |
|                       |              |       | flow measurement               |                                                      |  |  |  |  |
|                       |              |       | Air bubbles in the media       | Follow piping guidelines.                            |  |  |  |  |
|                       |              |       | Pulsating flow                 | Increase the time constant for outputs and display.  |  |  |  |  |
| Measuring error       | >20 mA       | 3     | Flow exceeds 110%              | Make sure the sensor is correctly sized and check    |  |  |  |  |
|                       |              |       | of Maximum flow                | maximum flow in Basic menu.                          |  |  |  |  |
|                       | >10 kHz      | 4     | Flow exceeds 110%              | Make sure the sensor is correctly sized and check    |  |  |  |  |
|                       | max          |       | of Maximum flow                | maximum flow in Basic menu.                          |  |  |  |  |
|                       | 0 Hz         | 5     | Volume/pulse too low           | Check volume/pulse and pulse width in Output menu    |  |  |  |  |
|                       |              |       | or pulse width too long        | for the flow measured.                               |  |  |  |  |
|                       |              |       | Wrong calibration constant     | Check that the K-factor in the Sensor menu           |  |  |  |  |
|                       |              |       |                                | corresponds to the value on the nameplate            |  |  |  |  |
|                       |              |       |                                | of the meter.                                        |  |  |  |  |
|                       |              |       | The sensor is not              | Check calculation of insertion depth. Ensure that    |  |  |  |  |
|                       |              |       | correctly positioned           | sensor is inserted to correct depth. Ensure that     |  |  |  |  |
|                       |              |       |                                | sensor is aligned correctly.                         |  |  |  |  |
|                       | 4 mA offset  |       | 4 mA calibration value         | Calibrate 4 mA point in Service menu.                |  |  |  |  |
|                       | at no flow   |       | incorrect                      |                                                      |  |  |  |  |
|                       | 20 mA offset |       | 20 mA calibration value        | Calibrate 20 mA point in Service menu.               |  |  |  |  |
|                       | at max. flow |       | incorrect                      | _                                                    |  |  |  |  |

#### SERVICE

Section 6

# ELECTRONICS REMOVAL



The electronics used in the V-BAR are CMOS and can be susceptible to electrostatic discharge. It is recommended that a wrist strap be used to ground the technician during service work.

Turn the power supply off. Remove condulet cap, unscrew the three phillips display board screws. Gently remove the display board from the electronics stack. Unscrew hex standoff bolts to remove electronics stack from filter board. Carefully pull the electronics board set from the condulet and set them aside in an anti-static bag. Remove sensor female connector from the filter board male connector. Loosen the three phillips filter board screws. Remove filter board from condulet taking care not to bend the three feed through pins. Electronics replacement should be done by reversing the steps described above. Replace the condulet cap when done.

## SENSOR FUNCTIONALITY TEST



Functionality test should be performed at the electronics condulet regardless of mounting configuration (integral or remote). Use proper ESD precautions at all times. Disconnect the power. Remove the electronics stack from the condulet and place into an anti-static bag. Verify the sensor is properly connected to the filter board. Disconnect the sensor from the filter board. Insert solid wire (approx. 1/32" diameter) into the sensor female connector to serve as leads. Check the resistance between the red wire and green (or white) wire. The resistance should be between 500 and 2500. Check the resistance between the green (or white) and black wire. The resistance should be between 500 and 2500 . The two previous resistance measurements should be within 30 of each other. Check the resistance between all four wires and earth ground (the condulet or meter body). The resistance should also be at least 20 M.

# V-BAR 600/60S REMOVAL



Remove the power to the meter. Loosen the orientation set screw.

Retract the stem fully into the threaded pipe nipple by turning the retractor handle counterclockwise. Close the 2" isolation valve. Remove plug in 1/4" bleed valve. Slowly open the 1/4" bleed valve to release entrained fluid pressure.

Remove the meter from the isolation valve by unscrewing the meter out of the isolation valve. Reinstall the flowmeter as described in the installation process.

## V-BAR 600/60S SENSOR REMOVAL



Stem

Remove power to the meter. Remove the meter from the pipe. Disconnect sensor filter board connection as outlined previously.

Loosen the junction set screw. For the temperature or pressure transmitter options remove the two Phillips head screws in the wiring condulet holding the field wiring in place. Pull the terminal block out far enough to clear a path for the sensor connector. If the meter is equipped with the pressure option only, remove the cover plate to allow a path for the sensor connector.

Unscrew the stem from the junction mount and remove the stem by pulling it out from the bottom of the meter. Replace stem in reverse order.



## Warning:

When reassembling the stem, make sure that the flow direction arrow and Vortex sensor head input (flared side) are in opposite directions.

## SERVICE

## Section 6











WARNING Do not loosen the Swagelok® fitting under pressure. Doing so may result in serious injury.

Remove the power to the meter. Depressurize the system. Loosen the Swagelok<sup>@</sup> fitting.

Manually pull up on the orientation levers to retract the stem so the retaining ring contacts the base of the stem housing. Lightly tighten the Swagelok<sup>®</sup> fitting to hold stem in place.

Carefully detach the meter from the nipple or flange assembly. Reinstall the flowmeter as described in the installation process.

V-BAR 700 SENSOR REMOVAL To order a replacement sensor, contact your local sales representative.

# V-BAR 700 INTEGRAL ASSEMBLY



## SERVICE

## Section 6





# V-BAR 910/960 REMOVAL



#### WARNING

For a meter without an isolation valve, the system needs to be depressurized.

Remove the power to the meter. Loosen packing gland nuts.

Turn the handwheel counterclockwise to retract the stem out of the pipe. Close isolation valve. Slowly open 1/4" bleed valve to remove entrained fluid pressure.

Detach the meter from the isolation valve. Reinstall the flowmeter as described in the installation process.

## V-BAR 910/960 SENSOR REMOVAL



FLOW

Remove power to the meter. Remove the meter from the pipe. Disconnect sensor as outlined previously.

Loosen the orientation lever and the orientation set screw. For the temperature or pressure transmitter options remove the two Phillips head screws in the wiring condulet holding the field wiring in place. Pull the terminal block out far enough to clear a path for the sensor connector. If the meter is equipped with the pressure option only, remove the cover plate to allow a path for the sensor connector.

Unscrew the stem from the junction mount and remove it by pulling it out from the bottom of the meter. Replace stem in reverse order.

# Warning:

When reassembling the stem, make sure that the flow direction arrow and Vortex sensor head input (flared side) are in opposite directions.

## V-BAR 910/960 INTEGRAL ASSEMBLY



## V-BAR 910/960 REMOTE ASSEMBLY



# REMOTE ELECTRONICS ASSEMBLY



## INTERNAL WIRING





## SERVICE

Section 6





## SERVICE

Section 6

# ELECTRICAL





## PRESSURE TRANSMITTER

The PT combines micro machined silicon diaphragms with fully welded stainless steel and hastelloy pressure ports to provide a highly accurate, stable pressure transmitter with the materials and environmental protection required for industrial applications. The silicon sensors incorporate developments derived from aerospace applications to improve output noise, non–linearity, hysteresis and long term stability. A detachable industrial electrical connector provides access to the independent zero and span trim controls, and if a configuration change to the electrical or pressure connections are required on–site, replacement parts and screw in pressure adaptors are available. Each transmitter incorporates RFI/EMC and electrical spike protection.

## **Output Requirements**







## PRESSURE TRANSMITTER (continued)

## Zero and Span Adjustments

Zero and span adjustments can be carried out using the trimpots. To gain access to trimpots disassemble PT as follows: Remove connection cap screw. Remove connection cap. Loosen the two mounting screws. Gently remove connection plate. Adjust Zero and Span as needed. Place the connection plate back on the housing. For easier assembly, make sure to use the alignment guides on the side of the housing.



Using a 24 VDC power supply, dead weight tester, and digital multi-meter, make connections shown. With zero pressure applied to the transmitter, turn the zero adjustment screw until the output reads  $4 \pm .08$  mA. With full-scale pressure applied to the transmitter, turn the span adjustment screw until the output reads  $20 \pm .08$  mA. Because the span adjustment affects the zero point, steps 2 and 3 must be repeated until the readings are within  $\pm 0.8$  of zero and full scale.







## TEMPERATURE TRANSMITTER

The TEM may be selected with a direct RTD output or with an industry standard 4 to 20 mA output. The current output includes a preamplifier (PTM1) that is factory scaled and calibrated to one of several standard temperature ranges in either Fahrenheit or Celsius. The TEM is mounted within the V-BAR stem.

## **Output Requirements**



## Output Wiring Diagram



The preamplifier is factory prewired to the junction box terminal block of the V-BAR. No wiring to the TEM itself is required. There are four terminals on the TEM terminal strip:

- 1&5 Terminals 1 and 5 are the RTD terminals. The leads from the RTD are connected to these terminals.
  - Terminal 3 is the supply voltage terminal. This terminal is connected to terminal 5 of the junction box terminal block.
  - Terminal 4 is the return 4-20 mA signal. This terminal is connected to terminal 2 of the junction box terminal block.

## TEMPERATURE TRANSMITTER

(continued)

## Zero and Span Adjustments



Using a 24 VDC power supply, precision R-box, and digital multimeter, make connections to the PTM 1. Refer to the TEM calibration data supplied with the instrument. (A copy is also inside the condulet). The table below is an example of this data sheet.

| Calibration Data |                                                               |  |  |  |  |  |  |
|------------------|---------------------------------------------------------------|--|--|--|--|--|--|
| $32 \degree F =$ | $1000.00\Omega$                                               |  |  |  |  |  |  |
| 41 °F =          | 1019.03Ω                                                      |  |  |  |  |  |  |
| $50 \circ F =$   | $1038.04\Omega$                                               |  |  |  |  |  |  |
| $59 \circ F =$   | 1057.02Ω                                                      |  |  |  |  |  |  |
| $68 \degree F =$ | 1075.96Ω                                                      |  |  |  |  |  |  |
|                  | n Data<br>32 °F =<br>41 °F =<br>50 °F =<br>59 °F =<br>68 °F = |  |  |  |  |  |  |

Set the R-box to zero scale (4 mA), according to the resistance value in the calibration data. Turn the zero adjustment potentiometer until the output reads  $4 \pm .016$  mA. Set the R-box to full-scale (20 mA), according to the resistance value on the calibration data. Turn the span adjustment potentiometer until the output reads 20  $\pm .016$  mA. Because the span adjustment affects the zero point, steps 3 and 4 must be repeated until the readings are within  $\pm .016$  of zero and full-scale.

## TEMPERATURE TRANSMITTER DIMENSIONAL OUTLINE

The TEM can be ordered in two mounting configurations: Internal to the flowmeter (inside the stem), or external, inside a thermowell. The dimensional outline shows the external mount.



# MODEL AND SUFFIX CODES

V-BAR<sup>TM</sup> Insertion Vortex Flowmeter

| Catagory      | Description                                                                           | Description |              |       |       |       |         |  |  |
|---------------|---------------------------------------------------------------------------------------|-------------|--------------|-------|-------|-------|---------|--|--|
| Category      | Description                                                                           |             | Suffix Codes |       |       |       |         |  |  |
|               | Liquid or gas service, 400°F (204°C)                                                  | 600         |              |       |       |       |         |  |  |
|               | Steam service, 400°F (204°C)                                                          | 60S         |              |       |       | • • • |         |  |  |
|               | Liquid, gas or steam service, 500°F (260°C)                                           | 700         |              |       |       | • • • |         |  |  |
| Model         | Liquid, gas or steam service, 400°F (204°C)                                           | 910         |              | • • • | • • • | • • • |         |  |  |
|               | Liquid, gas or steam service, 500°F (260°C)                                           | 960         |              |       | • • • | • • • |         |  |  |
|               |                                                                                       |             |              |       |       |       |         |  |  |
|               | 2" male NPT (model 700)                                                               |             | 2NDT         |       |       |       |         |  |  |
|               | $2^{\circ}$ , mate 141 1 (model 700)<br>$2^{\circ}$ 150# flange (model 700, 910, 960) |             | 2F150        | • • • |       | • • • |         |  |  |
| Connection    | 2" 300# flange (model 700, 910, 960)                                                  |             | 2F300        | • • • | •••   | • • • |         |  |  |
| connection    | 2" 600# flange (model 700, 910, 960)                                                  |             | 2F600        | • • • | •••   | •••   | •••     |  |  |
|               | 2", 900# flange (model 700, 910, 960)<br>2", 900# flange (model 700, 910, 960)        |             | 2F900        | •••   | •••   | •••   | •••     |  |  |
|               | Thread-o-let. $xx = 03 - 80$ inches (models 600, 60S)                                 |             | VXX          |       |       |       |         |  |  |
|               | (includes 2" isolation valve)                                                         |             |              |       |       |       |         |  |  |
|               | No pressure transmitter<br>Pressure sensor with scaled preamplifier                   |             |              | XX    |       |       |         |  |  |
|               | $0 = 50 \operatorname{psig}(0 = 3.44 \operatorname{pro})$                             |             |              | 50    |       |       |         |  |  |
|               | 0 - 100  psig (0 - 6.89  parg)                                                        |             |              | 100   |       |       | •••     |  |  |
| Pressure      | 0 - 150  psig (0 - 10.34  parg)                                                       |             |              | 150   |       |       | •••     |  |  |
| Transmitter   | 0 - 200  psig (0 - 13.79  parg)                                                       |             |              | 200   |       |       |         |  |  |
|               | 0 - 250  psig (0 - 17.24  parg)                                                       |             |              | 250   |       |       |         |  |  |
|               | 0 - 500  psig (0 - 34.47  barg)                                                       |             |              | 500   |       |       |         |  |  |
|               | 0 - 1000  psig (0 - 68.95  barg)                                                      |             |              | 1000  |       |       |         |  |  |
|               | The transmitters can be scaled to accommodate                                         |             |              | PXX   |       |       |         |  |  |
|               | special requests and bar scaling (see below).                                         |             |              |       |       |       |         |  |  |
|               | No temperature transmitter                                                            |             |              |       | XXX   |       |         |  |  |
|               | Temperature sensor without preamplifier (RTD only)                                    |             |              |       |       |       |         |  |  |
|               | 1effon, $-200$ to $400^{\circ}$ F ( $-129$ to $204^{\circ}$ C)                        |             | • • •        | • • • | KID-I | • • • | • • •   |  |  |
|               | Fiberglass, 150 to $500^{\circ}$ F ( $65$ to $260^{\circ}$ C)                         |             | • • •        | • • • | KID-F | • • • | • • •   |  |  |
|               | (models /00 and 960 only)                                                             |             |              |       |       |       |         |  |  |
| Tomporature   | $32 \text{ to } 68^{\circ}\text{F}$                                                   |             |              |       | T00   |       |         |  |  |
| Sensor or     | $0 to 250^{\circ}F$                                                                   |             |              |       | T109  | • • • | • • •   |  |  |
| Transmitter   | $-40$ to $150^{\circ}$ F                                                              |             | • • •        |       | T11   | • • • |         |  |  |
| 11 ditaminici | $212 \text{ to } 400^{\circ}\text{F}$                                                 |             |              | • • • | T12   | •••   |         |  |  |
|               | 212 to 500°F                                                                          |             |              | • • • | T14   | •••   |         |  |  |
|               | -18 to 121°C                                                                          |             |              |       | T20   |       | •••     |  |  |
|               | $-40$ to $65^{\circ}$ C                                                               |             |              |       | T21   |       | •••     |  |  |
|               | 100 to 204°C                                                                          |             |              |       | T22   |       |         |  |  |
|               | 100 to 260°C                                                                          |             |              |       | T24   |       |         |  |  |
|               | Other - consult factory                                                               |             | • • •        | • • • | Other | •••   | • • •   |  |  |
|               | EZ Logic with local rate and total                                                    |             |              |       |       |       | LOC-TOT |  |  |
| Electronics   | Remote mount electronics                                                              |             |              |       |       |       | RMT     |  |  |
|               | Integral 110 VAC input                                                                |             |              |       |       |       | 110     |  |  |
|               | Integral 220 VAC input                                                                |             |              |       |       |       | 220     |  |  |

# MODEL AND SUFFIX CODES EXAMPLE:

V-BAR (Insertion Vortex Flowmeter)

- 910 (For liquid, gas or steam service  $400^{\circ}F(204^{\circ}C)$ )
- 2F900 (2", 900# ANSI flange rating)
- -200 (Pressure transmitter, 0-200 psig (0-13.79 barg))
- T12 (Temperature sensor 212° to 400°F)
- LOC-TOT (local indicator and totalizer)

# V-BAR - 910 - 2F900 -200 - T12 - LOC-TOT ORDERING INSTRUCTIONS

Please specify the following information with your order:

- Fluid type or composition
- Maximum, minimum, and normal operating flow rate
- Maximum, minimum, and normal operating temperatures

٦

- Maximum, minimum, and normal operating pressures
- Specific weight and viscosity at normal operating conditions


EMCO is the brand of precision flow meters for liquid, gas, and steam applications, accommodating a wide range of pipe sizes. Field proven for over 40 years, the EMCO product line offers solutions for measurement, including industrial inline vortex, industrial insertion vortex and turbine, and variable area flow products. EMCO products provide a wide range of metering solutions to diverse industries, including the military, hospitals, universities, and many Fortune 500 companies.

Our aim is to provide a metering solution that helps our customers achieve operational improvement through their production capability, usually in the form of reduced energy usage, improved product quality, lower emissions and greater production throughout. Reducing emissions, carbon footprint, and your company's impact on the environment is our goal. Not only will this have a strong social and environmental impact but also a positive economic impact today and well into the future.

For more information on EMCO products, contact: EMCO 2150 Miller Drive, Longmont, CO 80501 T: 800.356.9362 or 303.682.7060 F: 303.682.7069

> sales@emcoflow.com www.emcoflow.com



1150 Northpoint Blvd • Blythewood, SC 29016 Phone: 1.800.883.4411 • Fax: 803.714.2222 • www.spiraxsarco.com/us