

IM-S24-42-IN Issue 1

Spira-trol™ K and L Series Two-port Control Valves

Installation and Maintenance Instructions

Contents

1.	Safety information	1
2.	General product information	15
	2.1 General description	15
	2.2 Technical data	16
	2.3 Pressure/temperature limits - KE43 (Carbon steel)	18
	2.4 Pressure/temperature limits - KE61 and KE63 (Stainless steel)	22
	2.5 Pressure/temperature limits - KE71 and KE73 (SG iron)	26
	2.6 Pressure/temperature limits - KEA41, KEA42 and KEA43 (Carbon steel)	30
	2.7 Pressure/temperature limits - KEA61, KEA62 and KEA63 (Stainless steel)	34
	2.8 Pressure/temperature limits - KEA71 and KEA73 (SG iron)	38
	2.9 Pressure/temperature limits - LE31 and LE33 (Cast iron valve body)	42
	2.10 Pressure/temperature limits - LE43 (Carbon steel valve body)	44
	2.11 Pressure/temperature limits - LE63 (Stainless steel valve body)	46
	2.12 Pressure/temperature limits - LEA31 and LEA33 (Cast Iron valve body)	48
	2.13 Pressure/temperature limits - LEA43 (Carbon steel valve body)	50
	2.14 Pressure/temperature limits - LEA63 (Stainless steel valve body)	52
3.	Installation	54
4.	Maintenance: DN15 to DN100	55
	4.1 General	55
	4.2 Removal of valve bonnet	
	4.3 Replacement of PTFE gland packings	56
	4.4 Replacement of graphite gland packing	57
	4.5 Removal and refitting of the valve plug / stem assembly and seat	58
	4.6 Refitting the bonnet	59
	4.7 Bellows sealed valves	61

5.	Maintenance: DN125 to DN300	63
	5.1 General	03
	5.2 Removal of the valve bonnet	<u> </u>
	5.3 Replacement of PTFE gland packings	64
	5.4 Replacement of graphite gland packings	65
	5.5 Procedure for removal and refitting of valve plug/stem assembly and seat	66
	5.6 Refitting the bonnet	68
6.	Spare parts	70
	6.1 Spare parts - DN15 to DN100 Spira-trol™	70
	6.2 Spare parts - DN15 to DN100 Spira-trol [™] with bellows seal	72
	6.3 Spare parts - Spira-trol™ with bellows seal	74
	6.4 Spare parts - Spira-trol™ STEAM TIGHT	76
	6.5 Spare parts - DN125 to DN300 Spira-trol™ unbalanced valve	78
	6.6 Spare parts - DN125 to DN300 Spira-trol™ balanced	80
7.	Fault finding	82

Spira-trol™ K and L Series Two-port Control Valves

1. Safety information

Safe operation of these products can only be guaranteed if they are properly installed, commissioned, used and maintained by qualified personnel (see Section 1.11) in compliance with the operating instructions. General installation and safety instructions for pipeline and plant construction, as well as the proper use of tools and safety equipment must also be complied with.

Safety note - Handling precautions

PTFE

Within its working temperature range PTFE is a completely inert material, but when heated to its sintering temperature it gives rise to gaseous decomposition products or fumes which can produce unpleasant effects if inhaled. The inhalation of these fumes is easily prevented by applying local exhaust ventilation to atmosphere as near to their source as possible.

Smoking should be prohibited in workshops where PTFE is handled because tobacco contaminated with PTFE will during burning give rise to polymer fumes. It is therefore important to avoid contamination of clothing, especially the pockets, with PTFE and to maintain a reasonable standard or personal cleanliness by washing hands and removing any PTFE particles lodged under the fingernails.

1.1 Intended use

Referring to the Installation and Maintenance Instructions, name-plate and Technical Information Sheet, check that the product is suitable for the intended use/application.

The products listed on pages 4 to 10 comply with the requirements of the EU Pressure Equipment

Directive/UK Pressure Equipment (Safety) Regulations, carry the **(F** mark when so required

and fall within the Pressure Equipment Directive categories stated.

- i) The products have been specifically designed for use with liquids and gases which are in Groups 1 and 2 of the above mentioned Pressure Equipment Directive.The products' use on other fluids may be possible but, if this is contemplated, Spirax Sarco should be contacted to confirm the suitability of the product for the application being considered.
- ii) Check material suitability, pressure and temperature and their maximum and minimum values. If the maximum operating limits of the product are lower than those of the system in which it is being fitted, or if malfunction of the product could result in a dangerous overpressure or overtemperature occurrence, ensure a safety device is included in the system to prevent such over-limit situations.
- iii) Determine the correct installation situation and direction of fluid flow.
- iv) Spirax Sarco products are not intended to withstand external stresses that may be induced by any system to which they are fitted. It is the responsibility of the installer to consider these stresses and take adequate precautions to minimise them.
- v) Remove protection covers from all connections and protective film from all name-plates, where appropriate, before installation on steam or other high temperature applications.

KE valves

	Pro	oduct	Group 1 Gases	Group 2 Gases	Group 1 Liquids	Group 2 Liquids
		DN15 - DN25	SEP	SEP	SEP	SEP
		DN32	2	SEP	SEP	SEP
		DN40 - DN50	2	1	SEP	SEP
	PN40	DN65 - DN100	2	1	2	SEP
		DN125 - DN200	3	2	2	SEP
		DN250	3	2	2	1
		DN300	3	3	2	1
	PN25	DN200	3	2	2	SEP
		DN250 - DN300	3	2	2	1
	PN16	DN125	2	1	SEP	SEP
E43		DN150 - DN200	2	1	2	SEP
E43		DN250 - DN300	3	2	2	SEP
		DN15 - DN25	SEP	SEP	SEP	SEP
		DN32	2	SEP	SEP	SEP
		DN40 - DN50	2	1	SEP	SEP
	JIS 20 KS 20	DN65 - DN100	2	1	2	SEP
		DN125 - DN200	2	1	2	SEP
		DN250	3	2	2	1
		DN300	3	3	2	1
		DN125	2	1	SEP	SEP
	JIS 10 KS 10	DN150 - DN250	2	1	2	SEP
		DN300	3	2	2	SEP

spirax /sarco

KE valves (continued)

	Pr	oduct	Group 1 Gases	Group 2 Gases	Group 1 Liquids	Group 2 Liquids
		DN15 - DN25	SEP	SEP	SEP	SEP
KE61	PN40	DN32	2	SEP	SEP	SEP
		DN40 - DN50	2	1	SEP	SEP
		DN15 - DN25	SEP	SEP	SEP	SEP
		DN32	2	SEP	SEP	SEP
		DN40 - DN50	2	1	SEP	SEP
	PN40	DN65 - DN100	2	1	2	SEP
		DN125 - DN200	3	2	2	SEP
		DN250	3	2	2	1
		DN300	3	3	2	1
		DN200	3	2	2	SEP
	PN25	DN250 - DN300	3	2	2	1
	PN16	DN125	2	1	SEP	SEP
		DN150 - DN200	2	1	2	SEP
KE63		DN250 - DN300	3	2	2	SEP
		DN15 - DN25	SEP	SEP	SEP	SEP
		DN32	2	SEP	SEP	SEP
		DN40 - DN50	2	1	SEP	SEP
	JIS 20 KS 20	DN65 - DN100	2	1	2	SEP
		DN125 - DN200	2	1	2	SEP
		DN200	3	2	2	1
		DN300	3	3	2	1
		DN125	2	1	SEP	SEP
	JIS 10 KS 10	DN150 - DN250	2	1	2	SEP
	10 10	DN300	3	2	2	SEP

Spira-trol™ K and L Series Two-port Control Valves

KE valves (continued)

	Pr	oduct	Group 1 Gases	Group 2 Gases	Group 1 Liquids	Group 2 Liquids
		DN15 - DN25	SEP	SEP	SEP	SEP
KE71	PN25	DN32 - DN40	1	SEP	SEP	SEP
		DN50	2	1	SEP	SEP
		DN15 - DN25	SEP	SEP	SEP	SEP
	PN25	DN32 - DN40	1	SEP	SEP	SEP
		DN50 - DN80	2	1	SEP	SEP
		DN100 - DN125	2	1	2	SEP
		DN150 - DN200	3	2	2	SEP
KE73		DN65 - DN125	2	1	SEP	SEP
	PN16	DN150 - DN200	2	1	2	SEP
		DN15 - DN25	SEP	SEP	SEP	SEP
	JIS 10 KS 10	DN32 - DN65	1	SEP	SEP	SEP
		DN80 - DN125	2	1	SEP	SEP
		DN150 - DN200	2	1	2	SEP

KEA valves

	Proc	luct	Group 1 Gases	Group 2 Gases	Group 1 Liquids	Group 2 Liquids
		DN15 - DN25	SEP	SEP	SEP	SEP
KEA41 KEA42	ASME 300	DN32	2	SEP	SEP	SEP
		DN40 - DN50	2	1	2	SEP
		DN150	2	1	2	SEP
	ASME 150	DN200 - DN250	3	2	2	SEP
		DN300	3	3	2	1
	40115 000	DN15 - DN25	SEP	SEP	SEP	SEP
		DN32	2	SEP	SEP	SEP
		DN40 - DN100	2	1	2	SEP
KEA43	ASME 300	DN150 - DN200	3	2	2	SEP
		DN250	3	2	2	1
		DN300	3	3	2	1
		DN15 - DN25	SEP	SEP	SEP	SEP
	JIS 20	DN32	2	SEP	SEP	SEP
	KS 20	DN40 - DN50	1	1	SEP	SEP
		DN65 - DN100	2	1	2	SEP

Spira-trol™ K and L Series Two-port Control Valves

spirax /sarco

Product			Group 1 Gases	Group 2 Gases	Group 1 Liquids	Group 2 Liquids
		DN15 - DN25	SEP	SEP	SEP	SEP
KEA61 KEA62	ASME 300	DN32	2	SEP	SEP	SEP
		DN40 - DN50	2	1	2	SEP
		DN150	2	1	2	SEP
	ASME 150	DN200 - DN250	3	2	2	SEP
		DN300	3	3	2	1
		DN15 - DN25	SEP	SEP	SEP	SEP
		DN32	2	SEP	SEP	SEP
		DN40	2	1	SEP	SEP
KEA63	ASME 300	DN50 - DN100	2	1	2	SEP
REA03		DN150 - DN200	3	2	2	SEP
		DN250	3	2	2	1
		DN300	3	3	2	1
		DN15 - DN25	SEP	SEP	SEP	SEP
	JIS 20	DN32	2	SEP	SEP	SEP
	KS 20	DN40 - DN50	2	1	SEP	SEP
		DN65 - DN100	2	1	2	SEP
	ASME 250	DN15 - DN25	SEP	SEP	SEP	SEP
KEA71		DN32	2	SEP	SEP	SEP
		DN40 - DN50	2	1	SEP	SEP
		DN15 - DN25	SEP	SEP	SEP	SEP
	ASME 125	DN40 - DN65	1	SEP	SEP	SEP
	ASINE 125	DN80 - DN100	2	1	SEP	SEP
		DN150 - DN200	2	1	2	SEP
		DN15 - DN25	SEP	SEP	SEP	SEP
KEA73	ASME 250	DN40 - DN65	2	1	SEP	SEP
	ASIVIE 230	DN80 - DN100	2	1	2	SEP
		DN150 - DN200	3	2	2	SEP
		DN15 - DN25	SEP	SEP	SEP	SEP
	JIS 10 KS 10	DN32 - DN65	1	SEP	SEP	SEP
		DN80 - DN100	2	1	SEP	SEP

KEA valves (continued)

LE valves

	P	roduct	Group 1 Gases	Group 2 Gases	Group 1 Liquids	Group 2 Liquids
		DN15 - DN25	SEP	SEP	SEP	SEP
LE31 LE33	PN16	DN32 - DN50	1	SEP	SEP	SEP
		DN65 - DN100	2	1	SEP	SEP
		DN15 - DN25	SEP	SEP	SEP	SEP
LE43 LE63	JIS 10 KS 10	DN32 - DN65	1	SEP	SEP	SEP
		DN80 - DN100	2	1	SEP	SEP

LEA valves

	Prod	luct	Group 1 Gases	Group 2 Gases	Group 1 Liquids	Group 2 Liquids
	ASME 125	DN15 - DN25	SEP	SEP	SEP	SEP
LEA31 LEA33	JIS 10	DN32 - DN65	1	SEP	SEP	SEP
	KS 10	DN80 - DN100	2	1	SEP	SEP
	ASME 150	DN15 - DN25	SEP	SEP	SEP	SEP
LEA43 LEA63	JIS 10	DN32 - DN65	1	SEP	SEP	SEP
	KS 10	DN80 - DN100	2	1	SEP	SEP

Spira-trol™ K and L Series Two-port Control Valves

1.2 Storage

If the product is to be stored, it must be done so in the original packaging with protective covers in place in order to prevent the ingress of particles that could affect performance. Store in an area free from large temperature fluctuations or high humidity in order to prevent corrosion.

1.3 Access

Ensure safe access and if necessary a safe working platform (suitably guarded) before attempting to work on the product. Arrange suitable lifting gear if required.

1.4 Lighting

Ensure adequate lighting, particularly where detailed or intricate work is required.

1.5 Hazardous liquids or gases in the pipeline

Consider what is in the pipeline or what may have been in the pipeline at some previous time. Consider: flammable materials, substances hazardous to health, extremes of temperature.

1.6 Hazardous environment around the product

Consider: explosion risk areas, lack of oxygen (e.g. tanks, pits), dangerous gases, extremes of temperature, hot surfaces, fire hazard (e.g. during welding), excessive noise, moving machinery.

1.7 The system

Consider the effect on the complete system of the work proposed. Will any proposed action (e.g. closing isolation valves, electrical isolation) put any other part of the system or any personnel at risk?

Dangers might include isolation of vents or protective devices or the rendering ineffective of controls or alarms. Ensure isolation valves are turned on and off in a gradual way to avoid system shocks.

1.8 Pressure systems

Ensure that any pressure is isolated and safely vented to atmospheric pressure. Consider double isolation (double block and bleed) and the locking or labelling of closed valves. Do not assume that the system has depressurised even when the pressure gauge indicates zero.

1.9 Temperature

Allow time for temperature to normalise after isolation to avoid the danger of burns and consider whether protective clothing (including safety glasses) is required.

It is recommended that the valve is insulated in order to reduce the risk of burns when used on steam or other high temperature media.

PTFE SEALS

If seals made from PTFE have been subjected to a temperature approaching 260 °C (500 °F) or higher, they will give off toxic fumes, which if inhaled are likely to cause temporary discomfort. It is essential for a no smoking rule to be enforced in all areas where PTFE is stored, handled or processed as persons inhaling the fumes from burning tobacco contaminated with PTFE particles can develop 'polymer fume fever'.

1.10 Tools and consumables

Before starting work ensure that you have suitable tools and/or consumables available. Use only genuine Spirax Sarco replacement parts.

1.11 Protective clothing

Consider whether you and/or others in the vicinity require any protective clothing to protect against the hazards of, for example, chemicals, high/low temperature, radiation, noise, falling objects, and dangers to eyes and face.

1.12 Permits to work

All work must be carried out or be supervised by a suitably competent person.

Installation and operating personnel should be trained in the correct use of the product according to the Installation and Maintenance Instructions.

Where a formal 'permit to work' system is in force it must be complied with. Where there is no such system, it is recommended that a responsible person should know what work is going on and, where necessary, arrange to have an assistant whose primary responsibility is safety. Post 'warning notices' if necessary.

1.13 Handling

Manual handling of large and/or heavy products may present a risk of injury. Lifting, pushing, pulling, carrying or supporting a load by bodily force can cause injury particularly to the back. You are advised to assess the risks taking into account the task, the individual, the load and the working environment and use the appropriate handling method depending on the circumstances of the work being done.

1.14 Safe lifting practice

It is recommended to lift the complete valve assembly using the correct equipment(s) and techniques so as not to cause damage or injury. Valves should be supported under the inlet and outlet connections, not the actuator or accessories, an careful attention should be made to prevent the valve from rotating during the lift sequence. When installed, the neither the valve or its accessories should be used as a hand hold or step for access to other part of the plant.

1.15 Residual hazards

In normal use the external surface of the product may be very hot. If used at the maximum permitted operating conditions the surface temperature of some products may reach temperatures of 538 $^{\circ}$ C (1 000 $^{\circ}$ F).

Many products are not self-draining. Take due care when dismantling or removing the product from an installation (refer to 'Maintenance instructions').

1.16 Freezing

Provision must be made to protect products which are not self-draining against frost damage in environments where they may be exposed to temperatures below freezing point.

1.17 Disposal

Unless otherwise stated in the Installation and Maintenance Instructions, this product is recyclable and no ecological hazard is anticipated with its disposal providing due care is taken. However, if the valve is fitted with a Viton or PTFE component, special care must be taken to avoid potential health hazards associated with decomposition/burning of these seats.

PTFE:

- Can only be disposed of by approved methods, not incineration.
- Keep PTFE waste in a separate container, do not mix it with other rubbish, and consign it to a landfill site.

1.18 Sizing

Control valves should be correctly sized and selected for the application. Incorrect sizing can result in environmental noise limits being exceeded. Poor sizing can also lead to poor control of the process or premature failure of the valve. Please consult Spirax Sarco for guidance.

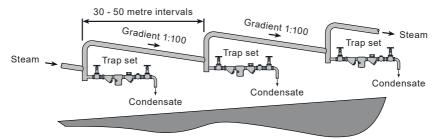
1.19 Returning products

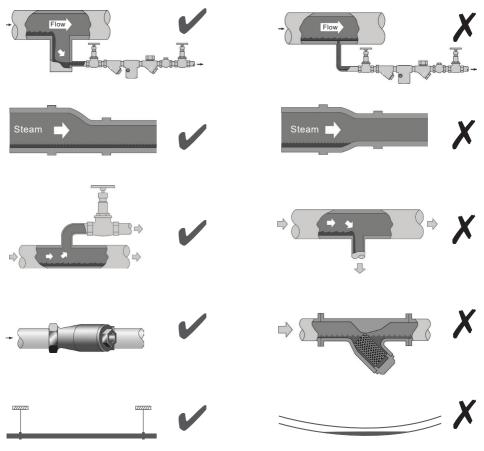
Customers and stockists are reminded that under EC Health, Safety and Environment Law, when returning products to Spirax Sarco they must provide information on any hazards and the precautions to be taken due to contamination residues or mechanical damage which may present a health, safety or environmental risk. This information must be provided in writing including Health and Safety data sheets relating to any substances identified as hazardous or potentially hazardous.

1.20 Working safely with cast iron products on steam

Cast iron products are commonly found on steam and condensate systems. If installed correctly using good steam engineering practices, it is perfectly safe. However, because of its mechanical properties, it is less forgiving compared to other materials such as SG iron or carbon steel. The following are the good engineering practices required to prevent waterhammer and ensure safe working conditions on a steam system.

Safe Handling

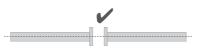

Cast Iron is a brittle material. If the product is dropped during installation and there is any risk of damage the product should not be used unless it is fully inspected and pressure tested by the manufacturer.

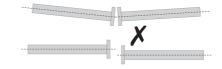


Prevention of waterhammer

Steam trapping on steam mains:

Steam Mains - Do's and Don'ts:

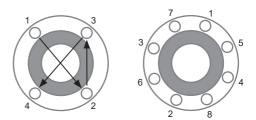



Spira-trol[™] K and L Series Two-port Control Valves

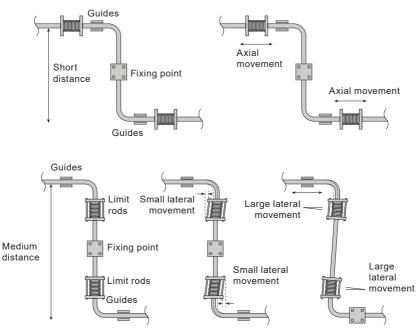
spirax /sarco

Prevention of tensile stressing

Pipe misalignment:



Installing products or re-assembling after maintenance:



Do not over tighten. Use correct torque figures.

Flange bolts should be gradually tightened across diameters to ensure even load and alignment.

Thermal expansion:

Spira-trol[™] K and L Series Two-port Control Valves

2. General product information

2.1 General description

Spira-trol[™] is a range of two-port single seat globe valves with cage-retained seats conforming to either EN (DIN) or ASME standards. These valves are available as follows:

- DN15 to DN200 (1/2" to 8") with a choice of three body materials.
- DN250 and DN300 (10" and 12") with a choice of two body materials.

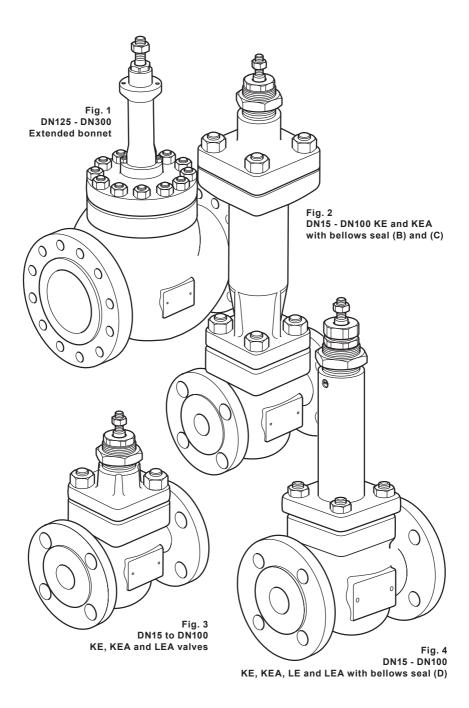
These valves, when used in conjunction with a pneumatic or electric linear actuator provide modulating control or on/off service.

Spira-trol[™] valve characteristic - options:

KE and	KEA	Equal percentage (E) - Suitable for most modulating process control
LE and	LEA	applications providing good control at low flowrates.
KF and	KFA	Fast opening (F) - For on/off applications only.
KL and	KLA	Linear (L) - Primarily for liquid flow control where the differential
LL and	LLA	pressures across the valve is constant.

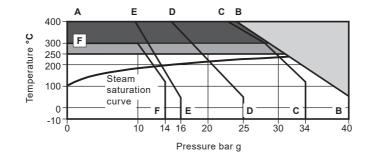
Important note: Throughout this document, reference has been made to the standard KE, KEA, LE and LEA control valves. With the exception of trim type, all derivatives are identical.

Spira-trol[™] two-port control valves are compatible with the following actuators


Flectric	DN15 - DN50: AEL3				
Electric	DN15 - DN300: AEL5, AEL6				
Pneumatic PN1000, PN9000 and TN2000					
Refer to the relevant Technical Information sheet for further details.					

2.2 Technical data

Plug desig	n				Parabolic		
	Metal-to-metal	Standard s	Standard seat Class IV with the option of Class V				
Leakage	Soft and	Balanced			Class IV		
	Soft seal	Unbalance	ed		Class VI		
		Equal			50:1		
Rangeabili	ty	Linear			30:1		
		Fast openi	ing		10:1		
		DN15 to D	N50 (½" to	2")	20 mm (¾")		
Travel		DN65 to D	N100 (21/2"	to 4")	30 mm (1⅔16")		
		DN125 to DN300 (5" to 12")			70 mm (2¾")		
		KE4_ see Section 2.3					
		KE6_ see Section 2.4					
		KE7_ see	Section 2.5	i			
			KEA4_ se	e Section 2.6			
			KEA6_ se	e Section 2.7			
			KEA7_ se	e Section 2.8			
Pressure/te	emperature limits			LE3_ see Section 2.	9		
				LE4_ see Section 2.	10		
			LE6_ see Section 2.11				
				LEA3_s	ee Section 2.12		
				LEA4_s	ee Section 2.13		
				LEA6_s	ee Section 2.14		



Spira-trol™ K and L Series Two-port Control Valves

spirax /sarco

2.3 Pressure/temperature limits

KE43 (Carbon steel)

The product **must not** be used in this region.

High temperature packing is required for use in this region.

High temperature bolting and packing is required for use in this region.

- A B Flanged EN 1092 PN40.
- A C Flanged JIS/KS 20.
- A D Flanged EN 1092 PN25.

Notes:

1. Where the process fluid temperature is sub-zero and the ambient temperature is below +5 °C, the external moving parts of the valve and actuator must be heat traced to maintain normal operation.

A - E Flanged EN 1092 PN16.

F-F Flanged JIS/KS 10.

2. When selecting a valve with a bellows sealed bonnet, the pressure/temperature limits of the bellows must be read in conjunction with the valve pressure/temperature limits shown in table below.

Body design condit	ions			PN40	
Maximum design pi	ressure		40 bar	g @ 50 °C	
Maximum design te	mperature			400 °C	
Minimum design ter	nperature			-10 °C	
	PTFE soft seat	-	Option G	170 °C	
	PEEK soft seat	-	Option C or P	220 °C	
	Standard packing PTFE chevron	-	Option P or N	250 °C1	
	PEEK seat	-	Option K	250 °C	
Maximum	Extended bonnet with PTFE chevron	-	Option E (with PTFE chevron)	250 °C	
operating temperature	Graphite packing	-	Option H ²	— 400 °C	
	Extended bonnet with graphite packing	-	Option E (with graphite packing)	- 400 C	
	Bellows B	-	Option B	300 °C	
	Bellows C	-	Option C	400 °C	
	Bellows D	-	Option D	300 °C	
Minimum	PTFE chevron packing			-10 °C	
operating temperature⁴	Graphite packing			-10 °C	
Maximum differential pressures	See relevant actuator Technical Inforr	nat	tion Sheet		
Maximum cold hydr	aulic test pressure of:			60 bar g	

Notes:

¹ Maximum Continuous Operation for PTFE: 220 °C

² For valves operating above 300 °C, extended bonnet is recommended
 ³ For valves operating above 300 °C, high temperature bolting is recommended

⁴ For lower operating temperatures consult Spirax Sarco

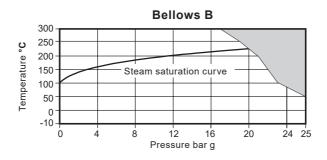
KE43 (Carbon steel) Bellows only

Maximum operating temperature

Minimum operating temperature

Note: For lower operating temperatures consult Spirax Sarco.

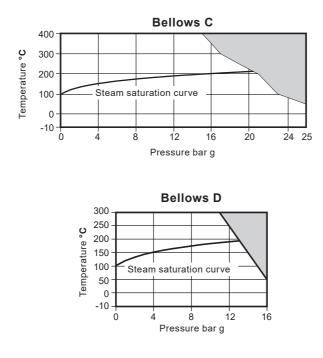
Maximum differental pressures


See relevant actuator Technical Information sheet

-10 °C

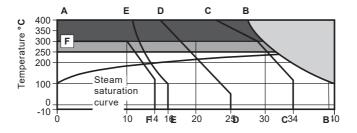
60 bar g

Maximum cold hydraulic test pressure of:


Warning: If the valve is fitted with a bellows it must be removed if hydraulic testing is to be done.

The product **must not** be used in this region.

Spira-trol[™] K and L Series Two-port Control Valves



The product **must not** be used in this region.

spirax /sarco

2.4 Pressure/temperature limits

KE61 and KE63 (Stainless steel)

The product must not be used in this region.

High temperature packing is required for use in this region.

High temperature bolting and packing is required for use in this region.

- A B Flanged EN 1092 PN40 and screwed BSP.
- A C Flanged JIS/KS 20.
- A D Flanged EN 1092 PN25.

Notes:

- 1. Where the process fluid temperature is sub-zero and the ambient temperature is below +5 °C, the external moving parts of the valve and actuator must be heat traced to maintain normal operation.
- 2. When selecting a valve with a bellows sealed bonnet, the pressure/temperature limits of the bellows must be read in conjunction with the valve pressure/temperature limits shown in table below.

- A E Flanged EN 1092 PN16.
- F-F Flanged JIS/KS 10.

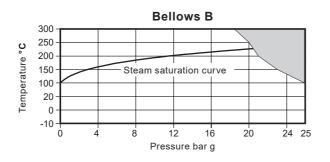
Body design condi	itions			PN40
Maximum design p	pressure		40 bar g	@ 100 °C
Maximum design t	emperature			400 °C
Minimum design te	emperature			-10 °C
	PTFE soft seat	-	Option G	170 °C
	Standard packing PTFE chevron	-	Option P or N	250 °C1
	PEEK seat	-	Option C or P	220 °C
	PEEK soft seat	-	Option K	250 °C
Maximum operating temperature	Extended bonnet with PTFE chevron	-	Option E (with PTFE chevron)	250 °C
	Graphite packing	-	Option H ²	400 °C
	Extended bonnet with graphite packing	-	Option E (with graphite packing)	400 °C
	Bellows B	-	Option B	300 °C
	Bellows C	-	Option C	400 °C
	Bellows D	-	Option D	300 °C
Minimum	PTFE chevron packing			-10 °C
operating temperature ³	Graphite packing			-10 °C
Maximum differential pressures	See relevant actuator Technical Inform	nat	tion Sheet	
Maximum cold hyd	Iraulic test pressure of:			60 bar g

Notes:

¹ Maximum Continuous Operation for PTFE: 220 °C

² For valves operating above 300 °C, extended bonnet is recommended
 ³ For lower operating temperatures consult Spirax Sarco

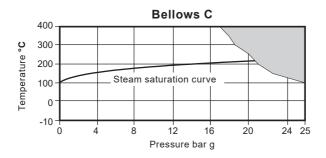
Spira-trol™ K and L Series Two-port Control Valves

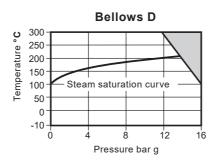

2.4 Pressure/temperature limits (continued)

KE61 and KE63 (Stainless steel) Bellows only

Maximum operating temperature

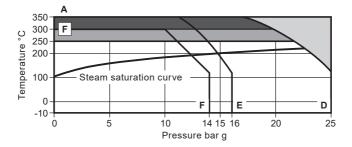
	PTFE packing	-10 °C -10 °C	
Minimum operating temperature	Graphite packing		
Note: For lower operating temperatures consult	Spirax Sarco.		
Maximum differental pressures	See relevant actuator Techr	nical Information sheet	
Maximum cold hydraulic test pressure of:		60 bar g	


Warning: If the valve is fitted with a bellows it must be removed if hydraulic testing is to be done.



The product **must not** be used in this region.

Spira-trol[™] K and L Series Two-port Control Valves


The product **must not** be used in this region.

Spira-trol™ K and L Series Two-port Control Valves

spirax /sarco

2.5 Pressure/temperature limits

KE71 and KE73 (SG iron)

The product **must not** be used in this region.

High temperature packing is required for use in this region.

High temperature bolting and packing is required for use in this region.

- A D Flanged EN 1092 PN25 and Screwed BSP.
- A E Flanged EN 1092 PN16.
- F-F Flanged JIS/KS 10.

Notes:

- 1. Where the process fluid temperature is sub-zero and the ambient temperature is below +5 °C, the external moving parts of the valve and actuator must be heat traced to maintain normal operation.
- 2. When selecting a valve with a bellows sealed bonnet, the pressure/temperature limits of the bellows must be read in conjunction with the valve pressure/temperature limits shown in table below.

Body design cond	litions			PN25
Maximum design	pressure		25 bar	g @ 120 °C
Maximum design	temperature			350 °C @
Minimum design	temperature			-10 °C
	PTFE soft seat	-	Option G	200 °C
	Standard packing PTFE chevron	-	Option P or N	250 °C1
	PEEK seat	-	Option C or P	220 °C
	PEEK soft seat	-	Option K	250 °C
Maximum operating temperature	Extended bonnet with PTFE chevron	-	Option E (with PTFE chevron)	250 °C
	Graphite packing	-	Option H ²	250.003
	Extended bonnet with graphite packing	-	Option E (with graphite packing)	— 350 °C³
	Bellows B	-	Option B	300 °C
	Bellows C	-	Option C	350 °C
	Bellows D	-	Option D	300 °C
Minimum	PTFE chevron packing			-10 °C
operating temperature⁴	Graphite packing			-10 °C
Maximum differential pressures	See relevant actuator Technical Inforr	na	tion Sheet	
Maximum cold hy	draulic test pressure of:			37.5 bar g

Note:

¹ Maximum Continuous Operation for PTFE: 220 °C

² For valves operating above 300 °C, extended bonnet is recommended

³ For valves operating above 300 °C, high temperature bolting is recommended

⁴ For lower operating temperatures consult Spirax Sarco

Spira-trol™ K and L Series Two-port Control Valves

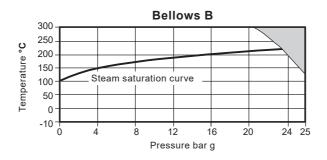
KE71 and KE73 (SG iron) Bellows only

Maximum operating temperature

Minimum operating temperature

Note: For lower operating temperatures consult Spirax Sarco.

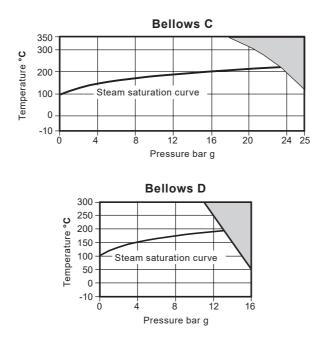
Maximum differental pressures


See relevant actuator Technical Information sheet

-10 °C

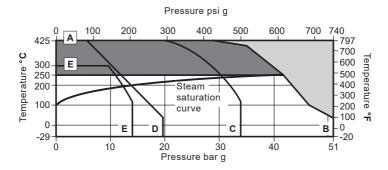
38 bar g

Maximum cold hydraulic test pressure of:


Warning: If the valve is fitted with a bellows it must be removed if hydraulic testing is to be done.

The product **must not** be used in this region.

Spira-trol[™] K and L Series Two-port Control Valves


The product **must not** be used in this region.

Spira-trol™ K and L Series Two-port Control Valves

spirax /sarco

2.6 Pressure/temperature limits

KEA41, KEA42 and KEA43 (Carbon steel)

The product **must not** be used in this region.

Graphite stem sealing is required for use in this region.

- A B Flanged ASME 300 and Screwed NPT and SW.
- A C Flanged JIS/KS 20.
- A D Flanged ASME 150.
- E-E Flanged JIS/KS 10.

Notes:

- Where the process fluid temperature is sub-zero and the ambient temperature is below +5 °C (41 °F), the external moving parts of the valve and actuator must be heat traced to maintain normal operation.
- 2. When selecting a valve with a bellows sealed bonnet, the pressure/temperature limits of the bellows must be read in conjunction with the valve pressure/temperature limits shown above.
- 3. As standard the KEA, KFA, KLA series two-port control valves are supplied with the PTFE stem sealing option.

Spira-trol[™] K and L Series Two-port Control Valves

Body design condit	ions			ASME 150 and ASME 300	
Maximum design pressure	ASME 150		19.6 bar g @ 3	38 °C (284 psi g @ 100 °F)	
	ASME 300	51.1 bar g @ 38 °C (740 psi g @ 10			
Maximum design	ASME 150	425 °C @ 5.5 bar g (800 °F @ 80 psi			
temperature	ASME 300	425 °C @ 28.8 bar g (800 °F @ 410 ps			
Minimum design te	mperature			-29 °C (-20 °F)	
	PTFE soft seat	-	Option G	170 °C (338 °F)	
	Standard packing PTFE chevron	-	Option P or N	250 °C (482 °F) ¹	
	PEEK seat -	-	Option C and P	220 °C (428 °F) ¹	
		-	Option K	250 °C (482 °F)¹	
Maximum operating temperature	Extended bonnet with PTFE chevron	-	Option E (with PTFE chevron)	250 °C (482 °F)	
	Graphite packing	-	Option H ²		
	Extended bonnet with graphite packing	-	Option E (with PTFE chevron)	425 °C (800 °F)	
	Bellows B	-	Option B	300 °C (572 °F)	
	Bellows C	-	Option C	425 °C (800 °F)	
	Bellows D	-	Option D	300 °C (572 °F)	
Minimum	PTFE chevron packing			-29 °C (-20 °F)	
operating temperature ³	Graphite packing			-29 °C (-20 °F)	
Maximum differential pressures	See relevant actuator Technical Infor	ma	tion Sheet		
Maximum cold hydraulic test pressure of:			ASME 150: ASME 300:	29.4 bar g (426.4 psi g) 76.7 bar g (1112.4 psi g)	

Notes:

¹ Maximum Continuous Operation for PTFE: 220 °C (428 °F)

² For valves operating above 300 °C (572 °F), extended bonnet is recommended

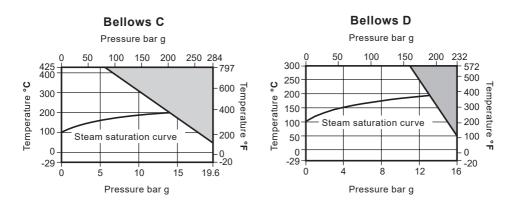
³ For lower operating temperatures consult Spirax Sarco

spirax sarco

KEA41, KEA42 and KEA43 (Carbon steel)

Bellows only

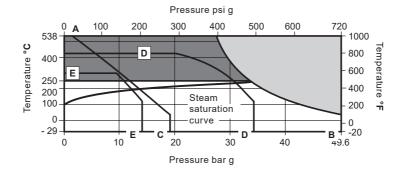
Maximum operating temperature


Minimum operating temperature		-29 °C	(-20 °F)
Note: For lower operating temperatures consult S	pirax Sarco.		
Maximum differental pressures	See relevant ac	ctuator Technical Inf	formation sheet
Maximum cold hydraulic test pressure of:	ASME 150 ASME 300	29.4 bar g 76.7 bar g	(426.4 psi g) (1112.4 psi g)
Warning: If the valve is fitted with a bellows it mu	st be removed if hydra	ulic testing is to be	done.

Bellows B Pressure bar g 50 100 150 200 250 284 0 300 -572 500 250 Temperature °C lemperature 200 400 150 300 100 200 Steam saturation curve 50 100 ĥ 0 0 -29 -20 10 15 19.6 0 5 Pressure bar g

The product **must not** be used in this region.

Spira-trol[™] K and L Series Two-port Control Valves



The product **must not** be used in this region.

33

2.7 Pressure/temperature limits

KEA61, KEA62 and KEA63 (Stainless steel)

The product must not be used in this region.

Graphite stem sealing is required for use in this region.

- A B Flanged ASME 300 and Screwed NPT and SW.
- A C Flanged ASME 150.
- A D Flanged JIS/KS 20.
- E-E Flanged JIS/KS 10.

Notes:

- Where the process fluid temperature is sub-zero and the ambient temperature is below +5 °C (41 °F), the external moving parts of the valve and actuator must be heat traced to maintain normal operation.
- 2. When selecting a valve with a bellows sealed bonnet, the pressure/temperature limits of the bellows must be read in conjunction with the valve pressure/temperature limits shown above.
- 3. As standard the KEA, KFA, KLA series two-port control valves are supplied with the PTFE stem sealing option.

Spira-trol[™] K and L Series Two-port Control Valves

Body design c	onditions	ASME 1	50 and ASME 300			
Maximum design pressure	ASME 150 (6" and 8" only)	19 bar g @ 38 °C (275 psi g @ 100 °F)				
	ASME 300	49.6 bar g @ 38 °C (720 psi g @ 100 °F				
Maximum	ASME 150	538 °C @ 1.4 bar g (1000 °F @ 20 psi g)				
design temperature	ASME 300	538 °C @ 25.2 bar g (1000 °F @ 365 psi g)				
Minimum desig	gn temperature		-29 °C (-20 °F)			
	PTFE soft seat	- Option G	170 °C (338 °F)			
	Standard packing PTFE chevron	- Option P or N	250 °C (482 °F) ¹			
	PEEK seat -	- Option C and P	220 °C (428 °F) ¹			
		- Option K	250 °C (482 °F) ¹			
Maximum	Extended bonnet with PTFE chevron	- Option E (with PTFE chevron)	250 °C (482 °F)			
operating temperature	Graphite packing	- Option H ²				
temperature	Extended bonnet with graphite packing	Option E (with graphite packing)	538 °C (1000 °F)			
	Bellows B	- Option B	300 °C (572 °F)			
	Bellows C	- Option C	538 °C (1000 °F)			
	Bellows D	- Option D	300 °C (572 °F)			
Minimum	PTFE chevron packing		-29 °C (-20 °F)			
operating temperature ³	Graphite packing		-29 °C (-20 °F)			
Maximum differential pressures	See relevant actuator Technical Infor	mation Sheet				

Maximum cold hydraulic test pressure of:

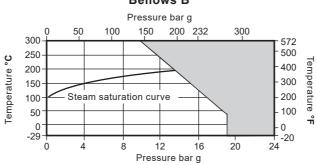
75 bar g (1087.5 psi g)

Note:

¹ Maximum Continuous Operation for PTFE: 220 °C (428 °F)

² For valves operating above 300 °C (572 °F), extended bonnet is recommended

³ For lower operating temperatures consult Spirax Sarco

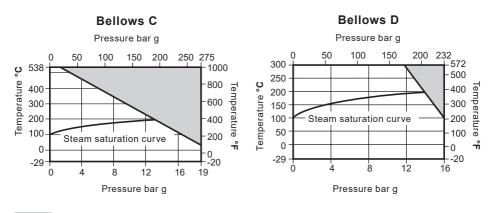


KEA61, KEA62 and KEA63 (Stainless steel)

Bellows only

Maximum operating temperature

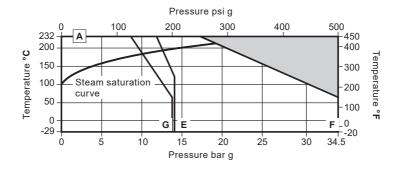
	PTFE packing	-29 °C	(-20 °F) (-20 °F)				
Minimum operating temperature	Graphite packing	-29 °C					
Note: For lower operating temperatures consult Spirax Sarco.							
Maximum differental pressures See relevant actuator Technical Information shee							
Maximum cold hydraulic test pressure of:		75 bar g	(1087.5 psi g)				
Warning: If the valve is fitted with a bellows it must be removed if hydraulic testing is to be done.							



Bellows B

The product **must not** be used in this region.

Spira-trol[™] K and L Series Two-port Control Valves


The product **must not** be used in this region.

Spira-trol[™] K and L Series Two-port Control Valves

spirax /sarco

2.8 Pressure/temperature limits

KEA71 and KEA73 (SG iron)

The product **must not** be used in this region.

- A E Flanged JIS/KS 10.
- A F Flanged ASME 250 and Screwed NPT and SW.
- A G Flanged ASME 125.

Notes:

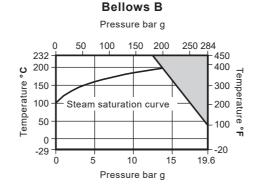
- Where the process fluid temperature is sub-zero and the ambient temperature is below +5 °C (41 °F), the external moving parts of the valve and actuator must be heat traced to maintain normal operation.
- 2. When selecting a valve with a bellows sealed bonnet, the pressure/temperature limits of the bellows must be read in conjunction with the valve pressure/temperature limits shown above.
- As standard the KEA, KFA, KLA series two-port control valves are supplied with the PTFE stem sealing option.

Body design c	onditions	ASME 1	25 and ASME 250	
Maximum	ASME 125	13.8 bar g @ 65 °C (200 psi g @ 150 °		
design pressure	ASME 250	34.5 bar g @ 65 °C (500 psi g @ 150		
Maximum	ASME 125	232 °C @ 8.6 bar g (4	50 °F @ 125 psi g)	
design temperature	ASME 250	232 °C @ 17.2 bar g (4	50 °F @ 250 psi g)	
Minimum desig	gn temperature		-29 °C (-20 °F)	
	PTFE soft seat	- Option G	170 °C (338 °F)	
	PEEK soft seat	- Option C or P	220 °C (428 °F)	
	Standard packing PTFE chevron	- Option P or N		
	PEEK seat	- Option K	232 °C (450 °F)1	
Maximum	Extended bonnet with PTFE chevron	- Option E (with PTFE chevron)		
operating temperature	Graphite packing	- Option H		
temperature	Extended bonnet with graphite packing	- Option E (with PTFE chevron)		
	Bellows B	- Option B		
	Bellows C	- Option C		
	Bellows D	- Option D		
Minimum	PTFE chevron packing			
operating temperature ²	Graphite packing		-29 °C (-20 °F)	
Maximum differential pressures	See relevant actuator Technical Infor	mation Sheet		
Maximum cold	hydraulic test pressure of:	51.	.8 bar g (750 psi g)	

Notes:

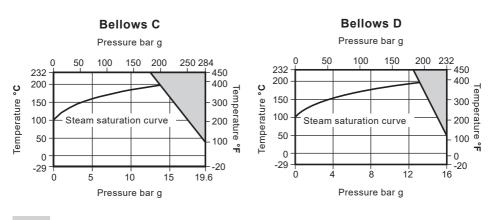
¹ Maximum Continuous Operation for PTFE: 220 °C (428 °F) ² For lower operating temperatures consult Spirax Sarco

2.8 Pressure/temperature limits (continued)


KEA71 and KEA73 (SG iron)

Bellows only

Maximum operating temperature


Minimum operating temperature	-29 °C	(-20 °F)	
Note: For lower operating temperatures consult Sp	irax Sarco.		
Maximum differential pressures	See relevant actu	ator Technical Info	ormation sheet
Mariana a la badara la és é ana ana af	ASME 125	20.7 bar g	(300 psi g)
Maximum cold hydraulic test pressure of:	ASME 250	51.8 bar g	(750 psi g)

Warning: If the valve is fitted with a bellows it must be removed if hydraulic testing is to be done.

The product **must not** be used in this region.

The product **must not** be used in this region.

Spira-trol[™] K and L Series Two-port Control Valves

spirax /sarco

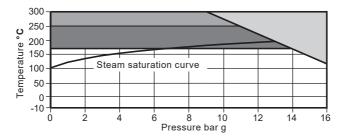
2.9 Pressure/temperature limits

LE31 and LE33 (Cast iron valve body)

Body design conditions	S		PN16
Maximum design press	sure		16 bar g @ 120 °C
Maximum design temp	erature	3	600 °C @ 9.6 bar g
Minimum design tempe	erature		-10 °C
	Standard packing PTFE chevron	- Option P or N	250 °C1
	PTFE soft seat	- Option G	170 °C
	PEEK soft seat	- Option C or P	220 °C
Maximum operating		- Option K	250 °C
temperature	Graphite packing	- Option H ²	300 °C
	Extended bonnet with PTFE chevron	- Option E	250 °C
	Extended bonnet with graphite packing	- Option E	300 °C
	Bellows	- Option D	300 °C
Minimum operating Note: For lower operating temperatures		consult Spirax Sarco	-10 °C
Maximum differential p	ressures See releva	nt actuator Technical	Information sheet.
Maximum cold hydraul	ic test pressure of:		24 bar g

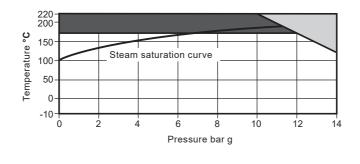
Notes:

¹ Maximum Continuous Operation for PTFE: 220 °C


² For valves operating above 300 °C, extended bonnet is recommended

³ For valves operating above 300 °C, high temperature bolting is recommended

⁴ For lower operating temperatures consult Spirax Sarco



Screwed BSP Flanged EN 1092 PN16

Note: When the process fluid temperature is sub-zero and the ambient temperature is below +5 °C, the external moving parts of the valve and actuator must be heat traced to maintain normal operation.

Flanged JIS/KS 10

The product **must not** be used in this region.

High temperature graphite packing is required for use in this region. **Note:** Soft seated valves cannot be used in this region.

PTFE soft seated valves are limited to a maximum operating temperature of 170 °C.

Spira-trol[™] K and L Series Two-port Control Valves

spirax sarco

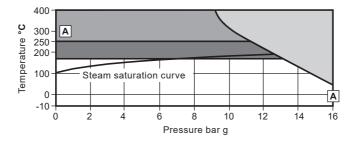
2.10 Pressure/temperature limits

LE43 (Carbon steel valve body)

Body design cor	ditions		PN16
Maximum desigr	n pressure		16 bar g @ 50 °C
Maximum desigr	n temperature		400 °C @ 9.5 bar g
Minimum design	temperature		-10 °C
	Standard packing PTFE chevron	- Option P or N	250 °C1
	PTFE soft seat	- Option G	170 °C
	PEEK soft seat	- Option C or P	220 °C
		- Option K	250 °C
Maximum operating	Graphite packing	- Option H	400 °C
temperature	Extended bonnet with PTFE chevron	- Option E	250 °C
	Extended bonnet with graphite packing	- Option E ²	400 °C
	Bellows	- Option D	300 °C
Minimum operating temperature	Note: For lower operating temper	atures consult Spirax Sarco	-10 °C
Maximum differe	ntial pressures	See relevant actuator Techni	cal Information sheet.
Maximum cold h	ydraulic test pressure of:		24 bar g

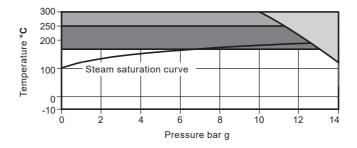
Notes:

¹ Maximum Continuous Operation for PTFE: 220 °C


² For valves operating above 300 °C, extended bonnet is recommended

³ For valves operating above 300 °C, high temperature bolting is recommended

⁴ For lower operating temperatures consult Spirax Sarco


Flanged EN 1092 PN16

Note: When the process fluid temperature is sub-zero and the ambient temperature is below +5 °C, the external moving parts of the valve and actuator must be heat traced to maintain normal operation.

Flanged JIS/KS 10

The product **must not** be used in this region. High temperature graphite packing is required for use in this region. **Note:** Soft seated valves cannot be used in this region.

PTFE soft seated valves are limited to a maximum operating temperature of 170 °C.

Spira-trol[™] K and L Series Two-port Control Valves

spirax sarco

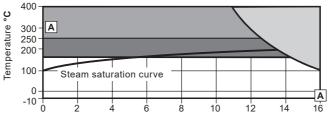
2.11 Pressure/temperature limits

LE63 (Stainless steel valve body)

Body design c	onditions		PN16
Maximum desi	gn pressure		16 bar g @ 100 °C
Maximum desi	gn temperature		400 °C @ 10.9 bar g
Minimum desig	gn temperature		-10 °C
	Standard packing PTFE chevron	- Option P or N	250 °C1
	PTFE soft seat	- Option G	170 °C
	PEEK soft seat	- Option C or P	220 °C
Maximum		- Option K	250 °C
operating temperature	Graphite packing	- Option H ²	400 °C
	Extended bonnet with PTFE chevron	- Option E	250 °C
	Extended bonnet with graphite packing	- Option E	400 °C
	Bellows	- Option D	300 °C
Minimum operating temperature Note: For lower operating temperatures consult Spirax Sarco		PTFE packing	-10 °C
		Graphite packing	-10 °C
Maximum diffe	erential pressures S	ee relevant actuator Tec	hnical Information sheet.
Maximum cold	hydraulic test pressure of:		24 bar g

Notes:

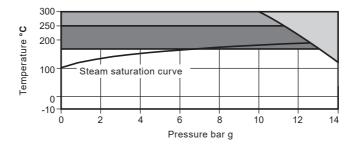
¹ Maximum Continuous Operation for PTFE: 220 °C


² For valves operating above 300 °C, extended bonnet is recommended

³ For valves operating above 300 °C, high temperature bolting is recommended

⁴ For lower operating temperatures consult Spirax Sarco

Flanged EN 1092 PN16



Note: When the process fluid temperature is sub-zero and the ambient temperature is below +5 °C, the external moving parts of the valve and actuator must be heat traced to maintain normal operation.

Flanged JIS/KS 10

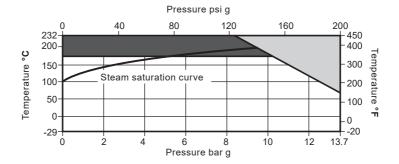
The product **must not** be used in this region.

High temperature graphite packing is required for use in this region. **Note:** Soft seated valves cannot be used in this region.

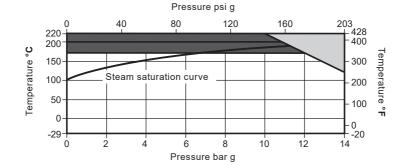
PTFE soft seated valves are limited to a maximum operating temperature of 170 °C.

Spira-trol[™] K and L Series Two-port Control Valves

spirax Sarco


2.12 Pressure/temperature limits

LEA31 and LEA33 (Cast Iron valve body)


Body design conditions				ASME 125
Maximum design pressure		13.7	bar g @ 65 °C	(200 psi g @ 150 °F)
Maximum design tempe	erature	232	°C @ 8.6 bar g	(450 °F @ 125 psi g)
Minimum design tempe	rature		-29 °C	(-20 °F)
	Standard packing PTFE chevron	- Option P or N	232 °C	(450 °F)
	PTFE soft seat	- Option G	170 °C	(338 °F)
	PEEK soft seat	- Option C or P	220 °C	(428 °F)
Marian		- Option K	232 °C	(450 °F)
Maximum operating temperature	Graphite packing	- Option H	232 °C	(450 °F)
	Extended bonnet with PTFE chevron	- Option E	232 °C	(450 °F)
	Extended bonnet with graphite packing	- Option E	232 °C	(450 °F)
	Bellows	- Option D	232 °C	(450 °F)
Minimum operating temperature	Note: For lower opera consult Spirax Sarco	ting temperatures	-29 °C	(-20 °F)
Maximum differential pressures		See relev	vant actuator Tech	nical Information sheet.
Maximum cold hydrauli		21 bar g	(300 psi g)	

Screwed NPT Flanged ASME class 125

Note: When the process fluid temperature is sub-zero and the ambient temperature is below +5 $^{\circ}$ C (41 $^{\circ}$ F), the external moving parts of the valve and actuator must be heat traced to maintain normal operation.

Flanged JIS/KS 10

The product **must not** be used in this region.

PTFE soft seated valves are limited to a maximum operating temperature of 170 °C (338 °F).

Spira-trol[™] K and L Series Two-port Control Valves

spirax sarco

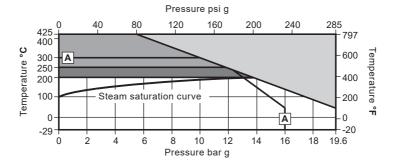
2.13 Pressure/temperature limits

LEA43 (Carbon steel valve body)

Body design c	onditions			ASME 150
Maximum design pressure		19.6 bar g @ 38 °C	(285 psi g @ 100 °F)	
Maximum desi	gn temperature		425 °C @ 5.5 bar g	(800 °F @ 80 psi g)
Minimum desig	gn temperature		-29 °C	(-20 °F)
	Standard packing PTFE chevron	- Option P or N	250 °C1	(482 °F) ¹
	PTFE soft seat	- Option G	170 °C	(338 °F)
	PEEK soft seat	- Option C or F	220 °C	(482 °F)
Maximum		- Option K	250 °C	(482 °F)
operating temperature	Graphite packing	- Option H ²	425 °C	(800 °F)
·	Extended bonnet with PTFE chevron	- Option E	250 °C	(482 °F)
	Extended bonnet with graphite packing	- Option E	425 °C	(800 °F)
	Bellows	- Option D	300 °C	(572 °F)
Minimum operating temperature	Note: For lower operating te Spirax Sarco	mperatures con	sult -29 °C	(-20 °F)
Maximum diffe	rential pressures	See re	levant actuator Techr	ical Information sheet.
Maximum cold	hydraulic test pressure of:		29.4 bar g	(426.4 psi g)

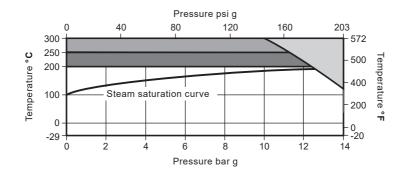
Notes:

¹ Maximum Continuous Operation for PTFE: 220 °C


² For valves operating above 300 °C, extended bonnet is recommended

³ For valves operating above 300 °C, high temperature bolting is recommended

⁴ For lower operating temperatures consult Spirax Sarco



Flanged ASME class 150

Please note - Bellows sealed valves (Option D) are limited to A - A.

Note: When the process fluid temperature is sub-zero and the ambient temperature is below +5 $^{\circ}$ C (41 $^{\circ}$ F), the external moving parts of the valve and actuator must be heat traced to maintain normal operation.

Flanged JIS/KS 10

The product **must not** be used in this region.

High temperature graphite packing is required for use in this region. **Note:** Soft seated valves cannot be used in this region.

PTFE soft seated valves are limited to a maximum operating temperature of 170 °C (338 °F).

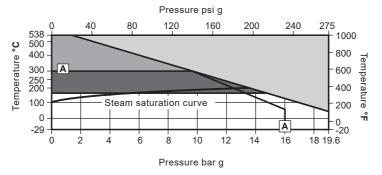
2.14 Pressure/temperature limits

LEA63 (Stainless steel valve body)

Body design c	onditions			ASME 150
Maximum design pressure 1		19.6 bar g @ 38 °C	(285 psi g @ 100 °F)	
Maximum desi	gn temperature		538 °C @ 1.3 bar g	(1 000 °F @ 20 psi g)
Minimum desig	gn temperature		-29 °C	(-20 °F)
	Standard packing PTFE chevron	- Option P or N	250 °C1	(482 °F) ¹
	PTFE soft seat	- Option G	170 °C	(338 °F)
	PEEK soft seat	- Option C or F	220 °C	(428 °F)
Maximum		- Option K	250 °C	(482 °F)
operating temperature	Graphite packing	- Option H ²	538 °C	(1 000 °F)
·	Extended bonnet with PTFE chevron	- Option E	250 °C	(482 °F)
	Extended bonnet with graphite packing	- Option E	538 °C	(1 000 °F)
	Bellows	- Option D	300 °C	(572 °F)
Minimum	Note: For lower operating te	mperatures con	-29 °C	(-20 °F)
operating temperature	Spirax Sarco		-29 °C	(-20 °F)
Maximum differential pressures See re		elevant actuator Tech	inical Information sheet.	
Maximum cold hydraulic test pressure of:			28.4 bar g	(413 psi g)

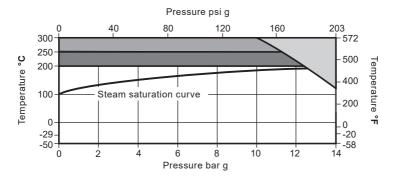
Notes:

¹ Maximum Continuous Operation for PTFE: 220 °C


² For valves operating above 300 °C, extended bonnet is recommended

³ For valves operating above 300 °C, high temperature bolting is recommended

⁴ For lower operating temperatures consult Spirax Sarco


Flanged ASME class 150

Please note - Bellows sealed valves (Option D) are limited to A - A.

Note: When the process fluid temperature is sub-zero and the ambient temperature is below +5 $^{\circ}$ C (41 $^{\circ}$ F), the external moving parts of the valve and actuator must be heat traced to maintain normal operation.

Flanged JIS/KS 10

The product **must not** be used in this region.

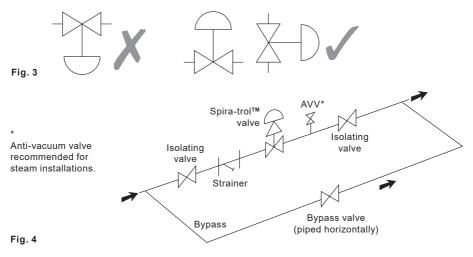
High temperature graphite packing is required for use in this region. **Note:** Soft seated valves cannot be used in this region.

PTFE soft seated valves are limited to a maximum operating temperature of 170 °C (338 °F).

sarco

Spira-trol[™] K and L Series Two-port Control Valves

spira


53

3. Installation

Note: Before actioning any installation, observe the 'Safety information' in Section 1.

Referring to the Installation and Maintenance Instructions, name-plate and Technical Information Sheet, check that the product is suitable for the intended installation:

- 3.1 Check materials, pressure and temperature and their maximum values. Do not exceed the performance rating of the valve. If the maximum operating limit of the product is lower than that of the system in which it is being fitted, ensure that a safety device is included in the system to prevent overpressurisation.
- **3.2** Ensure selection and installation of all accessories plus the connections including bolting and gaskets are correctly specified and in accordance with the system design temperature and pressure limitations.
- **3.3** In case of pneumatically actuated valves ensure available air pressure available conforms to the requirements and limitation of the actuator and positioner. It is recommended to use a pneumatic filter regulator device to ensure correct conditioning of the pneumatic supply. Please refer to relevant actuator or positioner Technical Information sheet for details.
- **3.4** Remove protection covers from all connections and protective film from all name-plates, where appropriate, before installation on steam or other high temperature applications.
- **3.5** Determine the correct installation situation and the direction of fluid flow. The valve should preferably be installed along a horizontal pipeline with the valve mounted above the pipe (see Figure 3). When mounting an actuator to the valve body, the actuator Installation and Maintenance Instructions must be followed.
- **3.6** Bypass arrangements It is recommended that isolating valves be fitted upstream and downstream of the control valve, together with a manual bypass control valve. This enables the process to be controlled manually using the bypass valve while the pneumatic valve is isolated for maintenance.
- **3.7** Support pipework should be used to prevent stresses being exerted on the valve body. **Note:** If a DN125 to DN300 valve is to be installed in vertical pipework the actuator will require additional support.
- **3.8** Ensure adequate space is provided for the removal of the actuator from the valve body for maintenance purposes.
- **3.9** Isolate connecting pipework. Ensure it is clean from dirt, scale etc. Any debris entering the valve may damage the head seal preventing the specified shut off.
- **3.10** Open isolation valves slowly, until normal operating conditions are achieved.
- 3.11 Check for leaks and correct operation.

Spira-trol[™] K and L Series Two-port Control Valves

4. Maintenance: DN15 to DN100

Note: Before actioning any installation, observe the 'Safety information' in Section 1.

Warning for all stainless steel valves

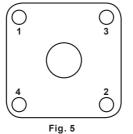
The 316 type stainless steel used in the construction of these products particularly for screwed or close fitting parts, is very susceptible to galling or cold welding. This is an inherent characterisitic of this type of material and great care should therefore be taken when dismantling or reassembling.

If the application permits, it is recommended that a light smear of a PTFE based grease is applied to any mating parts before reassembly.

4.1 General

Valve parts are subject to normal wear and must be inspected and replaced as necessary. Inspection and maintenance frequency depends on the severity of the service conditions. This section provides instructions on replacement packing, stem, plug and seat and bellows. All maintenance operations can be performed with the valve body in the line.

Annually


The valve should be inspected for wear and tear replacing any worn or damaged parts such as valve plug and stem, valve seat and gland seals, refer to Section 6 'Spare parts'.

Note 1: High temperature graphite packed seals are subject to wear during normal operation. We therefore recommend the graphite packing be replaced during this routine inspection to prevent premature failure of the packing during normal operation.

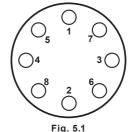

Note 2: It is recommended that all soft seals and gaskets be replaced whenever the valve is disassembled.

Table 1 Recommended tightening torques - Control valve sizes DN15 to DN100

	Torque (N m)		
Spira-trol [™] valve size	All versions (except Steam-Tight C)	Steam-Tight C	
DN15 - DN25	50	30	
DN32 - DN50	70	50	
DN65 - DN80	130	130	
DN100	100	100	

4-hole bonnet tightening sequence

8-hole bonnet tightening sequence

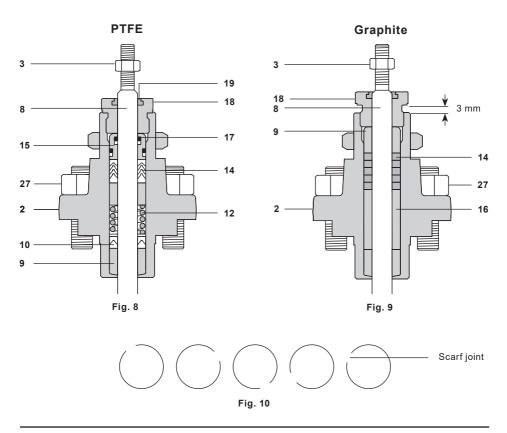
Spira-trol[™] K and L Series Two-port Control Valves

spirax sarco

4.2 Removal of valve bonnet

Note: This procedure is necessary before carrying out any of the maintenance procedures detailed below:

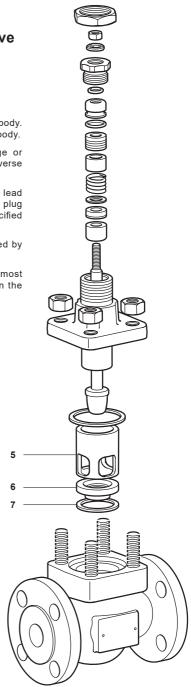
- Ensure that the valve is depressurised and clear of media and isolate it both upstream and downstream.
- Caution: care should be taken when disassembling the valve in case of residual pressure being trapped between the isolation points.
- Remove the actuator from the valve. Refer to the Installation and Maintenance Instructions covering Spirax Sarco actuators.
- Undo and remove the bonnet nuts (27) or the bolt if it is the LE valve.
- Remove the bonnet assembly.
- Remove and discard the body gasket.


4.3 Replacement of PTFE gland packings (reference Figure 8)

- Remove the lock-nut (3) and unscrew the gland nut (18).
- Remove the plug and stem (8).
- Remove the gland nut (18).
- Remove and discard scrapper ring (19) from gland nut (18).
- Clean the groove and inside diameter of the gland nut (18).
- Withdraw the gland components and discard (9, 10, 11, 12, 13, 14, 15, 16 and 17).
- Clean the gland cavity.
- Fit new gland components as shown here shown.
- Remove and discard plastic stem (X).
- Install scrapper ring (19) in the gland nut (18).
- Apply a slight smear of anti-seize lubricant to the gland nut threads before screweing it in two or three turns. At this stage the packing must not be significantly compressed.
- Final adjustment of the gland must be carried out after refitting the bonnet as detailed in Section 4.6.

4.4 Replacement of graphite gland packing (reference Figure 9)

- Remove the lock-nut (3) and unscrew the gland nut (18)
- Remove the plug and stem (8)
- Remove the gland nut (18)
- Remove the upper Stellite bearing (9) and retain, withdraw the graphite packing (14) and discard. Remove the spacer (16) and lower bearing (9). Clean and examine these components and the upper bearing replacing any that show signs of damage or deterioration.
- Clean the gland cavity
- Reassemble the gland components in the order shown here.
- Note that the lower bearing must be fitted with the radiused edge downwards. When fitting the graphite seals, the scarf joints in each seal must be offset from the one below by 90° (figure 10)
- Apply a slight smear of anti-seize lubricant to the gland nut threads before screweing it in two or three turns. At this stage the packing must not be significantly compressed.
- Final adjustment of the gland must be carried out after refitting the bonnet as detailed in Section 4.6.


Spira-trol[™] K and L Series Two-port Control Valves

spira

x sarco

4.5 Removal and refitting of the valve plug/stem assembly and seat

- Lift out the seat retaining cage (5) followed by the seat (6).
 Warning: Don't damage the seat during dis-assembly.
- Remove the seat back gasket (7) and discard.
- Clean all components, including the seat recess in the valve body. Ensure graphite from seat gasket is remove from seat and body.
- Examine the seat and plug/stem assembly for damage or deterioration and renew as necessary. For C Seat option reverse the seat.
- Note: Score marks or scaly deposits on the valve stem will lead to early failure of the gland seals and damage to seat and plug sealing faces will result in leakage rates higher than those specified for the valve.
- Fit a new seat gasket (7) in the body seat recess followed by the seat (6).
- Refit the cage (5) ensuring that the flow windows are lower most and that it sits squarely on the seat without impinging on the valve body.

Spira-trol[™] K and L Series Two-port Control Valves

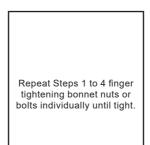
Fig. 11

4.6 Refitting the bonnet

Caution: The following must be carefully followed to enable the correct reassembly of the control valve, and the subsequent test that is required to ensure that the plug moves freely inside the valve seat:

- Fit new bonnet gasket.
- For PTFE packing version, apply a light smear of silicon grease at the top of the plug prior to insert it on the cover. Graphite packing version should not have silicon grease on it.
- Ensure the plug stem is fully extended without the upper stem threads making contact with stem seals on the top of the bonnet.
- Replace the bonnet and stem assembly to the valve body, locating the plug centrally into the seat.
- Holding the Plug in position, push the bonnet down on to the valve body.
- Proceed to tighten the bonnet into position by following Step 1 through to 7:

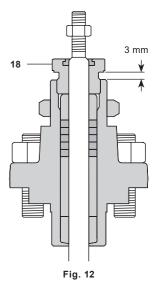
Fit bonnet nuts.


Finger tighten opposing bonnet nuts or bolts evenly in pairs.

Raise the stem to the highest position.

Firmly and briskly push the stem fully down.

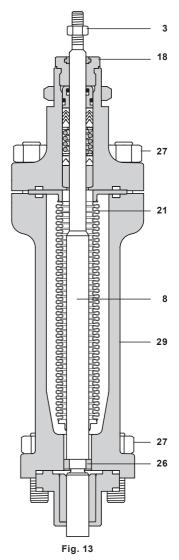
Using a spanner lightly and evenly tighten each bolt or nut by 45°, following the sequence illustrated in Figure 5, page 37.


After each tightening sequence lift the stem fully.

Firmly and briskly push the stem fully down.

- Repeat Steps 5, 6 and 7 until the bonnet nuts or bolts have an even tension.
- Continue Steps 5, 6 and 7 but use a torque wrench set at 10% of maximum required torque setting.
- Again, repeat Steps 5, 6 and 7, incrementally increasing the torque value to 20%, 40%, 60%, 80% and finally 100% of the required torque value (as specified in Table 1).
- Pull the plug off its seat, rotate by 120° and slowly push it back down into the seat checking for any signs
 of resistance as the plug comes into contact with the seat.
- Repeat the above Step, three more times.
- If any resistance is felt, this can indicate the plug and seat is misaligned and the process will need repeating.
- Tighten the gland nut (18) until:
 - i) PTFE gland assembly: Metal to metal contact with the bonnet. Torque to 20 Nm.
 - ii) Graphite gland assembly: A gap of 3 mm between the underside of the gland nut and the bonnet is achieved. See Figure 12.
- Refit the lock-nut (3).
- Reinstall the actuator.
- Bring the valve back into service.
- Check for leakage at the gland.

Note: Recheck the graphite seals and retighten the gland if necessary after a few hundred cycles as the seals fully bed in.



4.7 Bellows sealed valves

Note: These valves are fitted with a bellows stem seal as the primary seal together with a graphite stem seal. Any leakage from the stem will indicate a failure of the bellows seal.

4.7.1 Procedure for renewing the bellows (B) and (C) assembly:

- Isolate the valve on both sides.
 Caution: care should be taken in removing the valve bonnet since fluid under pressure may be trapped between the two isolating valves.
- Remove the actuator from the valve. Refer to the Installation and Maintenance Instructions covering Spirax Sarco actuators.
- Remove the lock-nut (3).
- Loosen the gland nut (18).
- Remove the 4 bonnet nuts (27).
- Gently remove the bonnet leaving the plug stem exposed.
- Remove the body nuts (7) and remove the bellows bonnet from the valve body.
- Grip the stem from the top. Push the stem (8) down to expose a lock-nut (26). Release the lock-nut and unscrew the plug from the stem.
- Remove and replace the bellows (21) from the bellows housing (29).
- Grip and push the new stem (8) to expose the thread using Loctite retainer 620, screw in the plug.
- Tighten lock-nut (26) to 20 N m.
- Replace seat gasket (see Section 4.2.1) and bonnet gasket (4) then re-assemble the bellows housing to the valve body. Finger tighten in sequence, refer to the note under bonnet nut torque setting, (see Table 1, page 41).
- Fit new stem seals in accordance with Section 4.2.
- Slide the bonnet (2) over the stem (8) and replace the body nuts (27) and tighten, in sequence, referring to 110Nm.
- Bring the valve back into service.
- Check for leakage at the gland.

Spira-trol[™] K and L Series Two-port Control Valves

sarco

spira

4.7.2 Procedure for renewing the bellows (D) assembly:

- Isolate the valve on both sides.
- Remove the actuator from the valve. Refer to the Installation and Maintenance Instructions covering Spirax-Sarco actuators.
- Remove in order: lock-nut (8), gland nut (9), gland nut spacer (19), the anti-rotation pin (16).

Caution: care should be taken in removing the valve bonnet since fluid under pressure may be remain inside between the valve body and bellows assembly (5).

- Remove the bonnet nuts (15) the bellows housing (2). Remove bonnet and bellows, alternatively if the bellows are to remain in place then apply pressure to stem and remove bonnet.
- Remove the bellows assembly (5), cage (20), the seat (4) and the gasket (7).
- Clean the gasket surfaces (7) seat (4) bonnet gasket (12), then remove graphite packing rings (17).
- Re-assemble in order: gasket (7), seat (4), cage (20), bonnet gasket (12), bellows assembly (5), the bellows cover gasket (13).
- Clean the internals of the bellows housing (2) with particular attention to the mating surfaces of the bellows cover gasket.
- Fit the bellows housing (2) ensuring that the hole in the anti-rotation pin (16) aligns with the milled flat on the bellows assembly (5).
- Screw in the anti-rotation pin (16) until finger tight, screw the gland nut spacer (19) and tighten to the torque indicated in Table 1. Insert new graphite packing rings (17) and screw the gland nut (9).
- Push the plug on to the seat to obtain correct alignment of the parts, then tighten in sequence to the torque previewed in Table 1. Re-fit bonnet nuts (15) and bellows housing (2).
- Re-fit the actuator. Refer to the Installation and Maintenance Instructions covering Spirax-Sarco actuators. Attention: In order to avoid damage to the bellows, do not rotate the stem.

Fig. 14

Important: When ordering spare bellows, ensure that the gaskets are also ordered.

5. Maintenance: DN125 to DN300

Note: Before actioning any installation, observe the 'Safety information' in Section 1.

5.1 General

Valve parts are subject to normal wear and must be inspected and replaced as necessary. Inspection and maintenance frequency depends on the severity of the service conditions. This Section provides instructions on the replacement of the packing, stem, plug and seat. All maintenance operations can be performed with the valve body in the line.

Note: It is recommended that all soft seals and gaskets are replaced whenever the valve is disassembled.

Annually

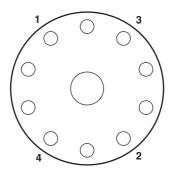
The valve should be inspected for wear and tear replacing any worn or damaged parts such as valve plug and stem, valve seat and gland seals, refer to Section 6 'Spare parts'.

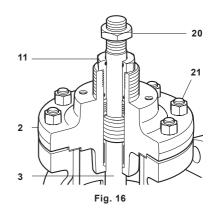
Note 1: High temperature graphite packed seals are subject to wear during normal operation. We therefore recommend the graphite packing be replaced during this routine inspection to prevent premature failure of the packing during normal operation.

Note 2: It is recommended that all soft seals and gaskets be replaced whenever the valve is disassembled.

Table 2 Recommended tightening torques - Control valve sizes DN125 to DN300

	DN125	DN150	DN200 to DN300
KE	203 N m	211 N m	265 N m
KEA	-	245 N m	365 N m




Fig. 15 DN125 to DN300

spirax sarco

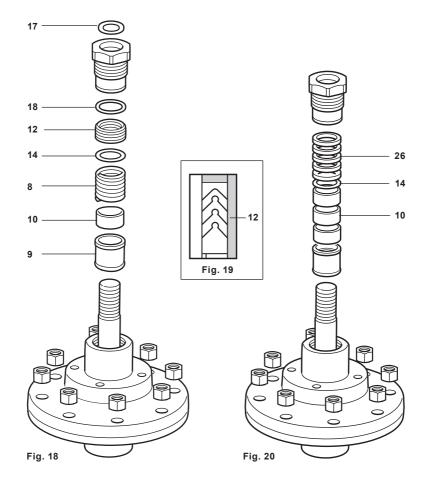
5.2 Removal of the valve bonnet

Note: This procedure is necessary before carrying out any of the maintenance procedures detailed below:

- Ensure that the valve is depressurised and clear of media and isolate it both upstream and downstream.
 Caution: care should be taken when disassembling the valve in case of residual pressure being trapped between the isolation points.
- Remove the actuator from the valve. Refer to the Installation and Maintenance Instructions covering Spirax Sarco actuators.
- Loosen the gland nut (11).
- Undo and remove the bonnet nuts (21).
- Using suitable lifting equipment, remove the bonnet (2) with the plug and stem assembly (3).
 Note: for balanced valves the cage will most likely be attached to the plug (due to the tight fit of the balanced seal).

5.3 Replacement of PTFE gland packings (reference Figure 18)

- Remove the lock-nut from the stem (20), and withdraw the plug stem assembly (with cage on balanced versions).
- Remove the 'O' rings (17 and 18) from the gland nut, ensuring that the grooves are clean and undamaged, replace with new items. The use of silicone grease on the 'O' rings is recommended.
- Withdraw the PTFE packing (12) and discard. Remove all metal components, washer (14), spring (8), bearing (9) and spacers (10) carefully noting how many components have been removed as it will differ on each valve size. Clean and examine these components replacing any that show signs of damage or deterioration.
- Clean the gland cavity and reassemble the gland components in the order shown in Figure 17.
 Note that the lower bearing must be fitted with the radius edge downwards. When fitting the chevron seals they should be inserted one at a time (see Figure 19). It may be necessary to compress the spring and seat using the gland nut after fitting two or three chevrons and to repeat this at similar intervals until all PTFE components are in place.
- Apply a light smear of anti-seize lubricant to the gland nut threads before screwing it two or three turns. At this stage the packing must not be significantly compressed.
- Final adjustment of the gland must be carried out after refitting the bonnet as detailed in Section 5.6.



Spira-trol[™] K and L Series Two-port Control Valves

5.4 Replacement of graphite gland packings (reference Figure 20)

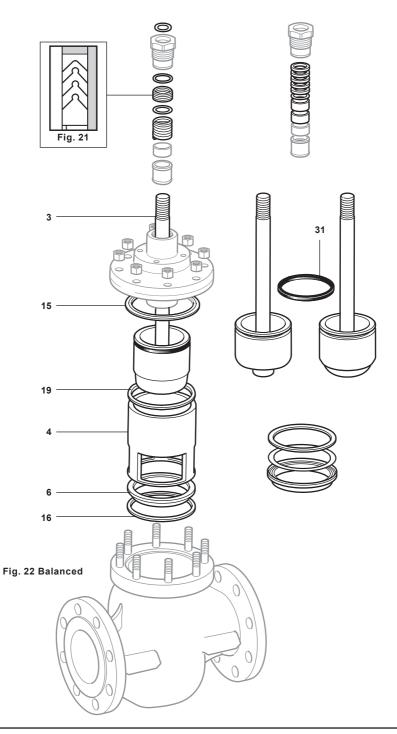
- Remove the lock-nut from the stem (20), and withdraw the plug stem assembly (with cage on balanced versions).
- Withdraw the graphite packing (26) and discard. Remove all metal components, washer (14) and spacers (10) carefully noting how many components have been removed as it will differ on each valve size. Clean and examine these components replacing any that show signs of damage or deterioration.
- Clean the gland cavity and reassemble the gland components in the order shown in Figure 17.
 Note that the lower bearing must be fitted with the radiused edge downwards. When fitting the graphite seals, the scarf joints in each seal must be offset from the one below by 90°.
- Apply a light smear of anti-seize lubricant to the gland nut threads before screwing it in sufficiently to seat and hold the packing without compressing it.
- Final adjustment of the gland must be carried out after refitting the bonnet as detailed in Section 5.6.

Spira-trol[™] K and L Series Two-port Control Valves

spira

k sarco

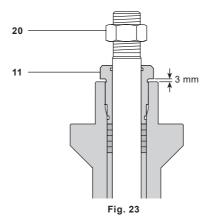
5.5 Procedure for removal and refitting of valve plug/stem assembly and seat


5.5.1 Unbalanced valves

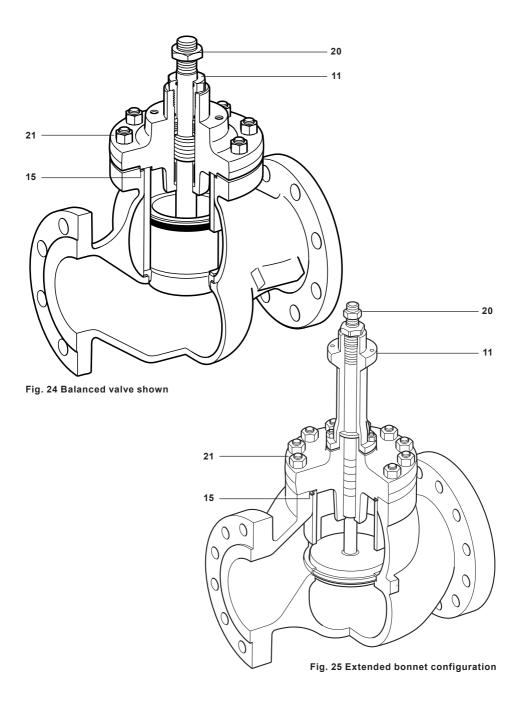
- Using lifting equipment as appropriate, withdraw the plug/stem assembly (3).
- Lift out the cage (4) followed by the seat (6).
- Remove the seat back gasket (16) and discard.
- Clean all the components, including the seat recess in the valve body.
- Examine the seat and plug/stem assembly for damage or deterioration and renew as necessary.
 Note: Score marks or scaly deposits on the valve stem will lead to early failure of the gland seals and damage to seat and plug sealing faces will result in leakage rates higher than those specified for the valve.
- Fit a new seat gasket (16) in the body seat recess followed by the seat (6).
- Refit the cage (4) ensuring that the flow windows are lower most and that it sits squarely on the seat without impinging on the valve body.
- Lower the plug/stem assembly squarely onto the seat ring ensuring that the stem is left vertical.

5.5.2 Balanced valves

- Using lifting equipment as appropriate, withdraw the plug/stem assembly (3) taking care not to let the cage fall back into the valve body.
- Remove and discard the upper cage seal (19).
- Remove and discard the balance seal (31).
- Lift out the seat (6).
- Remove the seat gasket (16) and discard.
- Clean all the components, including the seat recess in the valve body.
- Examine the cage, seat and plug/stem assembly for damage or deterioration and renew as necessary.
 Note: Score marks or scaly deposits on the cage internal surface or valve stem will lead to early failure of the seals and damage to the seat and plug sealing faces will result in leakage rates higher than those specified for the valve.
- Fit a new seat gasket (16) in the body seat recess followed by the seat (6).
- Refit the cage (4) ensuring that the flow windows are lower most and that it sits squarely on the seat without impinging on the valve body.
- Fit a new balance seal (**31**) into the plug groove.
- Refit the plug/stem into the cage ensuring that the balanced seal is not damaged during this process -Note: a light smear of silicone grease on the inner surface of the cage will aid fitting. The plug/stem assembly should easily move up and down in the cage, using moderate hand force, until it is located in the seat.
- Fit a new upper cage seal (19).


Spira-trol[™] K and L Series Two-port Control Valves

67


5.6 Refitting the bonnet

- Fit a new bonnet gasket (15).
- Using appropriate lifting equipment, carefully lower the bonnet into place over the valve stem. Care must be taken not to damage the new gland packing at this stage. **Note:** that the actuator mounting hole orientation should be in line with the valve flow axis.
- By hand tightening only, refit the bonnet nuts (21) to secure the bonnet in place.
- Raise the plug and stem assembly fully and forcefully push it back into the seat to align the internal components. Repeat a further two times. Re-tighten all bonnet nuts, hand tight.
- Apply a load to the stem (preferably replace the actuator), then re-tighten the bonnet nuts in sequence (see Figure 15 and Table 2).
- Tighten the bonnet nuts to 30% of required torque setting following a diametrically opposed sequence (see Figure 15 and Table 2).
- Repeat the above, using 60% of the required torque.
- Repeat the above, apply maximum torque value for the appropriate valve size.
- Raise the plug and stem assembly fully and forcefully push it back into the seat, repeat a further two times.
- Tighten the gland nut (11) until:
- i) PTFE gland assembly: metal-to-metal contact with the bonnet is achieved.
- ii) Graphite gland assembly: a gap of 3 mm between the underside of the gland nut and the bonnet is achieved. See Figure 23.
- Refit the lock-nut (20).
- Reinstall the actuator.
- Bring the valve back into service.
- Check for leakage at the gland.

Note: Recheck the graphite seals and retighten the gland if necessary after a few hundred cycles as the seals fully bed in.

6. Spare parts

6.1 Spare parts

DN15 to DN100 Spira-trol[™]

The spare parts available are shown in solid outline. Parts drawn in broken line are not supplied as spares.

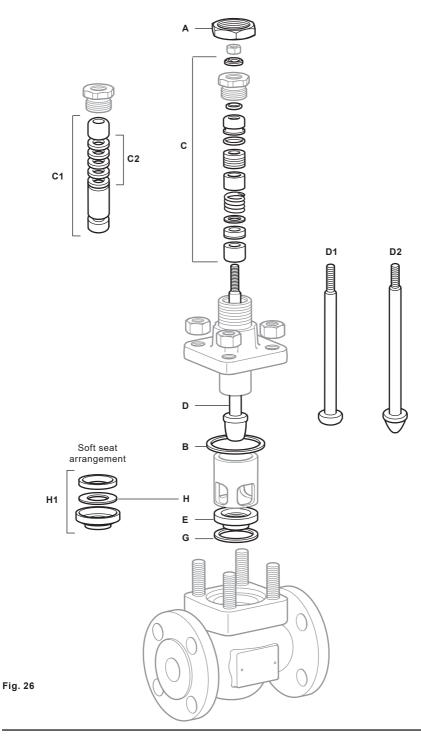
Note: When placing an order for spare parts please specify clearly the full product description as found on the label of the valve body, as this will ensure that the correct spare parts are supplied.

Available spares - K and L series

Actuator clamping nut		A
Gasket set (Non-	-bellows sealed)	В, G
	PTFE chevrons and gasket set	С
Stem seal kits	Graphite packing and gasket set	C2
PTFE to Graphit	e conversion kit	C1
	* Equal percentage trim (No gaskets supplied)	D, E
Diversion of the second	Fast opening trim and seat kit (No gaskets supplied)	D1, E
Plug stem	Linear trim (No gaskets supplied)	D2, E
	PTFE or PEEK soft seat seal	н
		B, G, C1
Stem packing a	nd gasket	B, G, C
		B, G, C2
Balanced seal s	et (part not shown)	
Soft seat set		H1

* Specify if reduced trim.

How to order spares


Always order spares by using the description given in the column headed 'Available spares', and state the size and type of valve including the full product description of the product.

Example: 1 - PTFE stem seal kit for a Spirax Sarco 1" Spira-troITM two-port LEA31 PTSUSS.2 Cv 12 control valve.

How to fit spares

Full fitting instructions are given in the Installation and Maintenance Instructions supplied with the spare.

Spira-trol™ K and L Series Two-port Control Valves

spirax /sarco

6.2 Spare parts

DN15 to DN100 Spira-trol[™] with bellows seal (B and C)

The spare parts available are shown in solid outline. Parts drawn in broken line are not supplied as spares.

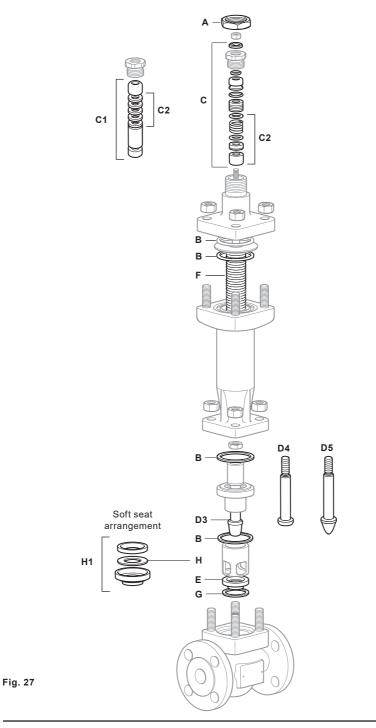
Note: When placing an order for spare parts please specify clearly the full product description as found on the label of the valve body, as this will ensure that the correct spare parts are supplied.

Available spares - KE and KEA

Actuator clamping nut		А
Gasket set (Bello	ows sealed)	B, G
Stem seal kit	Graphite packing and gasket set	C2
PTFE to Graphit	e conversion kit	C1
	* Equal percentage trim (No gaskets supplied)	D3, E
Plug stem and seat kit	Fast opening trim (No gaskets supplied)	D4, E
	Linear trim (No gaskets supplied)	D5, E
Bellows seal as	sembly	F
PTFE or PEEK so	oft seat seal	н
		B, G, C1
Stem packing ar	nd gasket	B, G, C
		B, G, C2
Balanced seal s	et (part not shown)	
Soft seat set		H1

* Specify if reduced trim.

How to order spares


Always order spares by using the description given in the column headed 'Available spares', and state the size and type of valve including the full product description of the product.

Example: 1 - PTFE stem seal kit for a Spirax Sarco 1" Spira-troITM two-port KEA31B TSUSS.2 Cv 12 control valve.

How to fit spares

Full fitting instructions are given in the Installation and Maintenance Instructions supplied with the spare.

Spira-trol™ K and L Series Two-port Control Valves **Spira**x Sarco

6.3 Spare parts

Spira-trol[™] with bellows seal (D)

The spare parts available are shown in solid outline. Parts drawn in broken line are not supplied as spares.

Note: When placing an order for spare parts please specify clearly the full product description as found on the label of the valve body, as this will ensure that the correct spare parts are supplied.

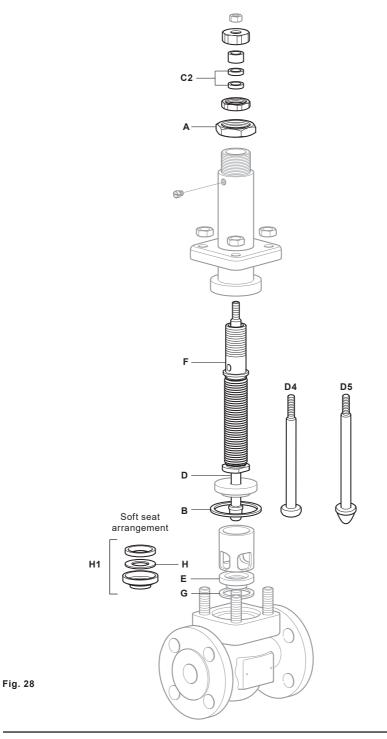
Available spares - LEA_D, LFA_D and LLA_D

Actuator clamping nut			Α
Gasket set (non-bellows sealed)			B, G
Stem seal kit	Graphite packing and gaske	C2	
	* Equal percentage trim	(No gaskets supplied)	D3, E
Plug stem and seat kit	Fast opening trim	(No gaskets supplied)	D4, E
	Linear trim	(No gaskets supplied)	D5, E
Bellows seal assembly			F
PTFE or PEEK soft seat seal			н
Balanced seal set (part no	ot shown)		
Soft seat set			H1

* Specify if reduced trim.

How to order spares

Always order spares by using the description given in the column headed 'Available spares', and state the size and type of valve including the full product description of the product.


Example: 1 - PTFE stem seal kit for a Spirax Sarco 1" Spira-troITM two-port LEA31B TSUSS.2 Cv 12 control valve.

How to fit spares

Full fitting instructions are given in the Installation and Maintenance Instructions supplied with the spare.

Spira-trol[™] K and L Series Two-port Control Valves

Spira-trol™ K and L Series Two-port Control Valves

6.4 Spare parts

Spira-trol[™] STEAM TIGHT (C)

The spare parts available are shown in solid outline. Parts drawn in a grey line are not supplied as spares.

Note: When placing an order for spare parts please specify clearly the full product description as found on the label of the valve body, as this will ensure that the correct spare parts are supplied.

Kit Description	Seat	Seat Gasket	Cover Gasket	Bellows Gasket	Cage	Plug
Conversion for valve before 2021	•	•	•	•	•	
Conversion for valve after 01/2021	•	•	•			
Conversion for bellow B&C and extended valve after 01/2021	•	•	•	•		
Cage					•	
Gasket		•	•			
Gasket for bellow B&C and extended valve		•	•	•		
Plug and seat	•					•

Available spares – Specific to STEAM TIGHT (C)

* Specify complete nomenclature of the valve.

How to order spares

Always order spares by using the description given in the column headed 'Available spares', and state the size and type of valve including the full product description of the product.

Example: 1 – Plug stem and seat kit for a Spirax Sarco DN25 Spira-trol two-port KE73 PCSUSS.2 Kv10 control valve.

How to fit spares Full fitting instructions are given in the Installation and Maintenance Instructions supplied with the spare.

3800900	CONVERSION KIT C DN25 FAST OPENING & Hi Capacity
3800901	CONVERSION KIT C DN25 EQ% and LINEAR Full trim
3800902	CONVERSION KIT C DN20 FAST OPENING & Hi Capacity
3800903	CONVERSION KIT C DN15 FAST OPENING & HI Capacity, DN20 Full Trim and DN25 Reduction 1 trim
3800904	CONVERSION KIT C DN15 EQ% and LINEAR Full trim, DN20 Reduction 1 trim, DN25 Reduction 2 trim
3800905	CONVERSION KIT C DN15 EQ% and LINEAR Reduction 1 trim, DN20 Reduction 2 trim, DN25 Reduction 3 trim
3800906	CONVERSION KIT C DN15 EQ% and LINEAR Reduction 2 trim, DN20 Reduction 3 trim, DN25 Reduction 4 trim
3800907	CONVERSION KIT C DN15 EQ% and LINEAR Reduction 3 trim, DN20 Reduction 4 trim, DN25 Reduction 5 trim
3800908	CONVERSION KIT C DN50 FAST OPENING & Hi Capacity
3800909	CONVERSION KIT C DN40 FAST OPENING & HI Capacity, DN50 EQ% and LINEARFull Trim
3800910	CONVERSION KIT C DN40 EQ% and LINEAR Full Trim and DN50 Reduction 1 trim
3800911	CONVERSION KIT C DN32 FAST OPENING & Hi Capacity
3800912	CONVERSION KIT C DN32 EQ% and LINEAR Full trim, DN40 Reduction 1 trim, DN50 Reduction 2 trim
3800913	CONVERSION KIT C DN32 EQ% and LINEAR Reduction 1 trim, DN40 Reduction 2 trim, DN50 Reduction 3 trim
3800914	CONVERSION KIT C DN32 EQ% and LINEAR Reduction 2 trim, DN40 Reduction 3 trim, DN50 Reduction 4 trim
3800915	CONVERSION KIT C DN32 EQ% and LINEAR Reduction 3 trim, DN40 Reduction 4 trim, DN50 Reduction 5 trim
3800916	CONVERSION KIT C DN80 Hi Capacity and Full Trim
3800917	CONVERSION KIT C DN65 Hi Capacity and Full Trim, DN80 Reduction 1 trim
3800918	CONVERSION KIT C DN65 Reduction 1 Trim, DN80 Reduction 2 trim
3800919	CONVERSION KIT C DN65 Reduction 2 Trim, DN80 Reduction 3 trim
3800920	CONVERSION KIT C DN65 Reduction 3 Trim, DN80 Reduction 4 trim
3800921	CONVERSION KIT C DN100 Full trim
3800922	CONVERSION KIT C DN100 Reduction 1 trim
3800923	CONVERSION KIT C DN100 Reduction 2 trim
3800924	CONVERSION KIT C DN100 Reduction 3 trim

6.5 Spare parts

DN125 to DN300 Spira-trol[™] unbalanced valve

The spare parts available are shown in solid outline. Parts drawn in broken line are not supplied as spares.

Note: When placing an order for spare parts please specify clearly the full product description as found on the label of the valve body, as this will ensure that the correct spare parts are supplied.

Gasket set		B, G
Stem seal	PTFE chevrons	С
kits	Graphite packing	C2
PTFE to Graphite	conversion kit	C1
	* Equal percentage trim (No gaskets supplied)	D, E
Plug stem	Fast opening trim and seat kit (No gaskets supplied)	D1, E
	Linear trim (No gaskets supplied)	D2, E
PTFE or PEEK soft seat seal		н
Soft seat conversi	ion kit (Metal to PTFE or metal to PEEK)	J
Cage		I

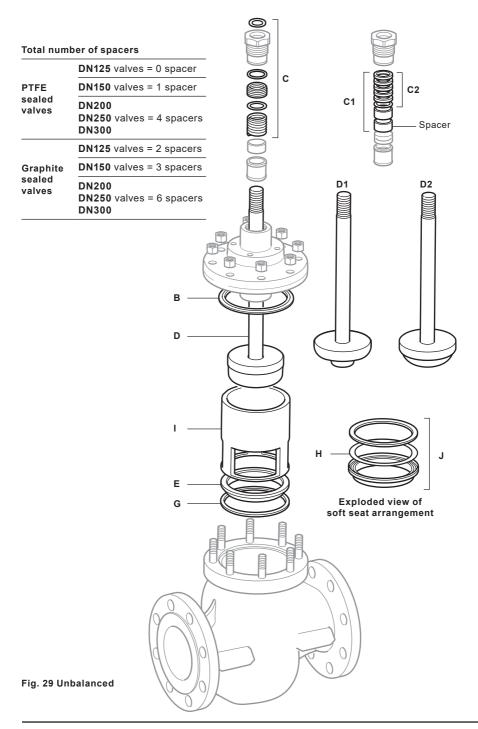
Available spares - K series only

* Specify if reduced trim.

Actuator clamping bolt (part not shown)

How to order spares

Always order spares by using the description given in the column headed 'Available spares', and state the size and type of valve including the full product description of the product.


Example: 1 - PTFE stem seal kit for a Spirax Sarco DN150 Spira-troITM two-port PTSUSS.2 Ky 370 control valve.

How to fit spares

Full fitting instructions are given in the Installation and Maintenance Instructions supplied with the spare.

Spira-trol[™] K and L Series Two-port Control Valves

Spira-trol[™] K and L Series Two-port Control Valves

6.6 Spare parts

DN125 to DN300 Spira-trol[™] balanced

The spare parts available are shown in solid outline. Parts drawn in broken line are not supplied as spares.

Note: When placing an order for spare parts please specify clearly the full product description as found on the label of the valve body, as this will ensure that the correct spare parts are supplied.

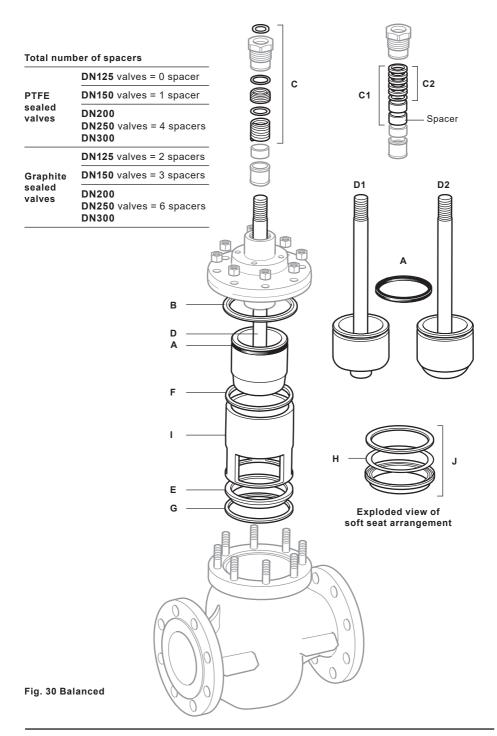
Gasket set		A, B, G, F
	PTFE chevrons	С
Stem seal kits	Graphite packing	C2
PTFE to Graphit	e conversion kit	C1
Plug stem and seat kit	* Balanced equal percentage trim (No gaskets supplied)	A, D, E
	Balanced fast opening trim (No gaskets supplied)	A, D1, E
	Balanced linear trim (No gaskets supplied)	A, D2, E
PTFE soft seat se	eal	н
Soft seat conve	rsion kit	J
Cage		I
Actuator clampi	ng bolt (part not shown)	

Available spares - K series only

* Specify if reduced trim.

How to order spares

Always order spares by using the description given in the column headed 'Available spares', and state the size and type of valve including the full product description of the product.


Example: 1 - PTFE stem seal kit for a Spirax Sarco DN150 Spira-troITM two-port KE43 PTSBSS.2 Kv 370 control valve.

How to fit spares

Full fitting instructions are given in the Installation and Maintenance Instructions supplied with the spare.

Spira-trol[™] K and L Series Two-port Control Valves

Spira-trol[™] K and L Series Two-port Control Valves

sarco

spira

81

7. Fault finding

Symptoms	Possible Cause Remedial Actions			
Leakage on inlet or outlet	Loose bolt	Retorque correctly the flange if leakage still present, Dismantle the flange and clean and inspect flange gasket face, replace gasket and retorque correctly the flange		
	Incorrect bolting used	Dismantle the flange and clean and inspect flange gasket face replace gasket and bolting and retorque correctly the flange		
	Incorrect gasket used	Dismantle the flange and clean and inspect flange gasket face replace gasket and retorque correctly the flange		
	Gasket damage	Dismantle the flange and clean and inspect flange gasket face, replace gasket and retorque correctly the flange		
	Flange gasket face damage or unclean	Dismantle the flange and clean and inspect flange gasket face, replace gasket and retorque correctly the flange		
	Uncorrect welding for Socket weld connection	Remove the welding and re-do and Inspect welding using NDT like dye penetrant		
	Pressure/temperature not adapt to connection	Check inlet pressure/temperature and refer to Technical sheet		
	Bonnet gasket is damage	- Isolate the valve and proceed for gasket replacment (See maintenance section)		
	Missing cover gasket after maintenance			
Leakage	Re-use of cover gasket during maintenance			
between body and bonnet	Relaxation or undertorque of the bolting	Check the bonnet bolting torque		
	Overpressure / temperature	Check the inlet pressure&temperature is in the correct pressure range		
	Incorrect fluid passing through the valve	Check the fluid is compatible with the valve materials		
	Stem seals are damage			
Leakage at top of the stem	Stem seals wrongly maintain	 Isolate the valve and proceed to stem sealing mainetnance (See maintenance section) 		
	Gland nut need retorque (on stem sealing option H, B, C, D)	Check you can stop the leakage by screwing gland nut.		
	Overpressure / temperature	Check the inlet pressure&temperature is in the correct pressure range		
	Incorrect fluid passing through the valve	Check the fluid is compatible with the valve materials		

Symptoms	Possible Cause	Remedial Actions
	Bonnet gasket is damage	Isolate the valve and proceed to gasket replacment (See maintenance section)
Leakage between extension and top cover (only on extended bonnet)	Relaxation of the bolting torque	Check the bonnet bolting torque
	Overpressure / temperature	Check the inlet pressure&temperature is in the correct pressure range
	Incorrect fluid passing through the valve	Check the fluid is compatible with the valve materials
	Bellow gasket is damage	Isolate the valve and proceed to gasket replacment (See maintenance section)
Leakage in anti-rotation	Relaxation of the bolting torque of the bellow nut	Retorque correctly the bellow nut if leakage still present proceed to gasket replacment (See maintenance section)
screw (only on bellow D version)	Overpressure / temperature	Check the inlet pressure&temperature is in the correct pressure range
	Incorrect fluid passing through the valve	Check the fluid is compatible with the valve materials
Leakage of the pressure containing shell	Erosion of the envelop	Isolate the valve and replace the product an evaluation of the root cause is needed
	Seat erosion, damage to plug, debris trapped between the plug and seat	Proceed to valve inspection and maintenance as needed. (See maintenance section)
	Diaphragm or actuator stem seal leak	Proceed to actuator inspection and maintenance.
	pneumatic supply leak	Check pneumatic supply
	control signal interuption	Check control signal
Pressure or	Electrical actuator failure	Proceed to actuator inspection and maintenance.
temperature of controlled	power supply interuption	Check power supply
variable rise when valve is	Positioner fault	Proceed to positioner inspection and maintenance or replacment.
closed	Seat gasket missing	Proceed to valve inspection and maintenance as needed. (See maintenance section)
	Relaxation or undertorque of the bolting	Check the bonnet bolting torque
	On seat option C, seat re-assemble on the 1st side after maintenance	Proceed to valve inspection and maintenance as needed.
	Seat gasket re-use during maintenance	 (See maintenance section)

Symptoms	Possible Cause	Remedial Actions		
	Overtorque of body/cover bolting			
Valve internal un-maintenable due to disformation	Seat gasket install wrongly between cage and seat	Proceed to valve inspection and maintenance as needed. (See maintenance section)		
	Seat not correctly install into the body	(,)		
Uncontrollable pressure or emperature of the controlled variable	Cage missing after maintenance	Proceed to valve inspection and maintenance as needed. (See maintenance section)		
Non linear stem movement	Mis-maintenance of the stem packing	Proceed to valve inspection and maintenance as needed. (See maintenance section)		
	Cage re-assemble upside down			
	Actuator clamp nut undertorque	Proceed to inspection and maintenance as needed. (See maintenance section)		
Poor control of the manipulated variable in response to control loop	Stem lock nut missing or undertorque			
	Overpressure / temperature / flowrate	Check application data with sizing sheet. On proceed to valve inspection and maintenance as needed. (See maintenance section		
	Incorrect fluid passing through the valve			
Actuator moving or turning, olus possible increase of valve stroke, plus possible pressure or emperature of controlled varaible rise when valve is closed	Actuator clamp nut undertorque or loose	Proceed to inspection and maintenance as needed. (See maintenance section)		
Stem to actuator coupling becomes oose - possible damage to stem or actuator (misalignment) / reduction of stroke / Pressure or temperature of controlled variable rise when valve is closed	Stem lock nut undertorque or loose	Proceed to inspection and maintenance as needed. (See maintenance section)		
Air leakage at the air inlet	Air connector defect	remove air connector, inspect it and replace it if needed, use PTFE tape on the screwed connection and rescrewed teh air connection		
connection (For pneumatic actuated valve)	Air connector connection damage	Proceed to actuator replacment		
	Overpressure / temperature	Check inlet air pressure/temperature and refer to Technical sheet		

Spira-trol™ K and L Series Two-port Control Valves

Possible Cause	Remedial Actions
Stem seal is damage	Proceed to stem seal replacment
Stem is damage	Check stem and proceed to acuator replacment if needed
Overpressure / temperature	Check inlet air pressure/temperature and refer to Technical sheet
Yoke gasket is damage	Proceed to gasket replacement
Bottom housing is disformed	Inspect the housing and proceed to actuator replacment if needed
Yoke bolt not torque correctly	Check the torque and adjust if needed
Overpressure / temperature	Check inlet air pressure/temperature and refer to Technical sheet
Diaphragm is damage	Proceed to diaphram replacment
Bottom or top housing are disformed	Inspect the housing and proceed to actuator replacment if needed
Diaphragm bolt not torque correctly	Check the torque and adjust if needed
Overpressure / temperature	Check inlet air pressure/temperature and refer to Technical sheet
Diaphragm is damage	Proceed to diaphram replacment.
Overpressure / temperature	Check inlet air pressure/temperature and refer to Technical sheet
Pneumatic supply or exhaust restricted	Proceed to inspection and check speed with actuator Technical sheet
	Stem is damage Overpressure / temperature Yoke gasket is damage Bottom housing is disformed Yoke bolt not torque correctly Overpressure / temperature Diaphragm is damage Bottom or top housing are disformed Diaphragm bolt not torque correctly Overpressure / temperature Diaphragm bolt not torque correctly Overpressure / temperature Diaphragm is damage Overpressure / temperature Diaphragm is damage Pneumatic supply or

Spira-trol™ K and L Series Two-port Control Valves

