

Vase de revaporisation Type FV

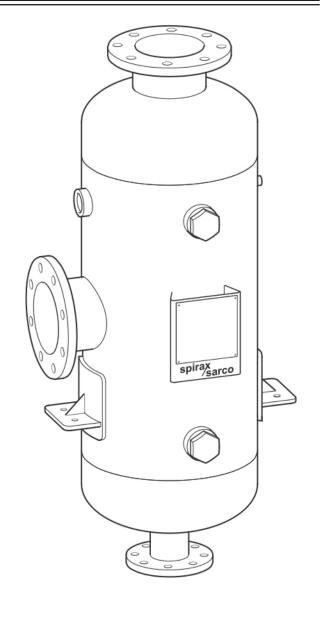
Description

Le vase de revaporisation Spirax Sarco FV est conçu et fabriqué suivant la norme ASME VIII DIV 1 2004 + ADD06. L'appareil se vidange automatiquement, ce qui est essentiel dans les applications de déconcentration de chaudière.

Applications

Ces vases sont particulièrement utilisés pour récupérer et réutiliser la vapeur de revaporisation. Celle-ci se forme lorsque du condensat ou des purges de déconcentration à une pression donnée sont évacués à une pression inférieure. Une séparation efficace est essentielle pour éviter de contaminer la bâche d'eau d'alimentation de la chaudière et/ ou les surfaces de transfert de chaleur.

Principales caractéristiques


- Conçu et construit en accord avec la Directive Européenne sur les équipements à pression 2014/68/EU.
- Faible vitesse d'écoulement pour permettre une bonne séparation (vapeur plus sèche).
- Vidange automatique.

Diamètres et raccordements

Raccordements disponibles en standard :

Taraudés BSP (BS 21 conique) A brides PN16 suivant EN 1092

Sur demande: A brides ASME B16.5 classe 150 ou 300, ou taraudés

Limites d'emploi

Conditions maximales de calcul du corps sont de 14 bar eff. à 198 °C (température de la vapeur saturée)

Température minimale de fonctionnement -10 °C

Pression d'épreuve hydraulique en accord avec la PED 2014/68/EU

Nota : La pression et la température maximale de calcul peuvent être limitées, plus basse à celle indiqué sur la plaque firme en fonction du choix de la classe des brides du système

PN16 13,3 bar eff. à 198°C

Classe A150 13.8 bar eff. à 198°C

Nota: Ces vases peuvent résister aux conditions de vide.

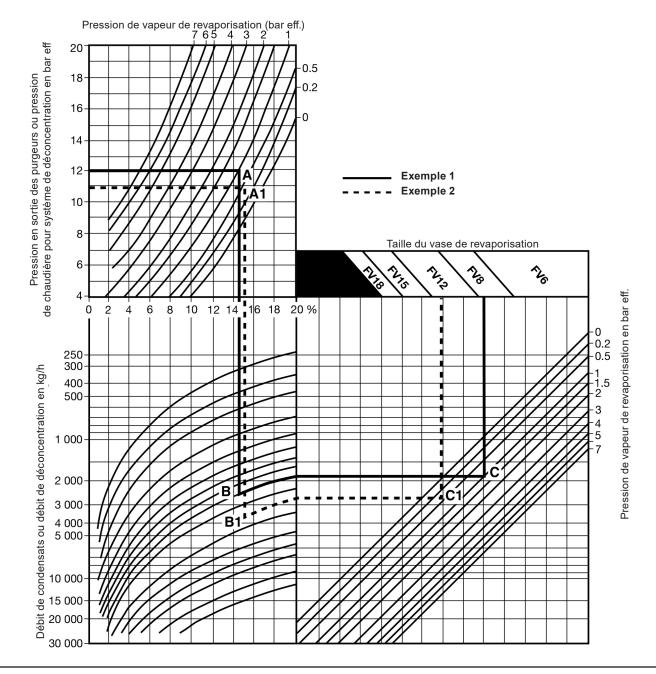
Construction

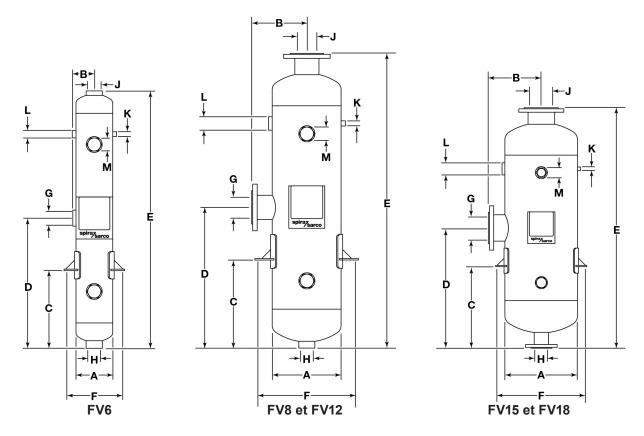
Rep.	Désignation	Matière	
1	Enveloppe	ASTM A106B	C. Max. 0.25%
2	Couvercle	ASTM A234 WPB	C. Max. 0.25%
3	Orifice taraudé	ASTM A105N	C. Max. 0.25%
4	Orifice taraudé	ASTM A105N	C. Max. 0.25%
5	Brides d'entrée/sortie	ASTM A516-70	C. Max. 0.25%
6	Tubulure d'entrée	ASTM A106B	C. Max. 0.25%
7	Orifice bouchonné	ASTM A105N	C. Max. 0.25%
8	Renfort	ASTM A516-60	C. Max. 0.25%
9	Support plaque-firme	BS EN 10028-2 P265GH	C. Max. 0.25%
10	Support de fixation	BS EN 10025 S275	C. Max. 0.21%

Dimensionnement

Pour déterminer le vase de revaporisation approprié, utiliser le diagramme ci-dessous. Il est nécessaire pour cela de connaître la pression à la sortie des purgeurs ou la pression de la chaudière s'il s'agit d'un système de récupération d'énergie des purges de déconcentration de chaudière, la pression de revaporisation (souhaitée ou existante) et le débit de condensats ou de déconcentration.

Exemple: 1 (traits continus)

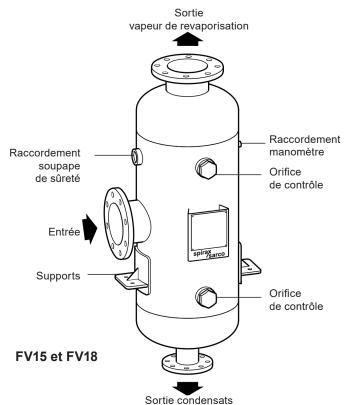

Une chaufferie, fonctionnant à 12 bar eff., a un taux de déconcentration (TDS) de 2 500 kg/h (3 chaudières à 833 kg/h chacune). La vapeur de revaporisation va être réutilisée dans un réseau basse pression de 1 bar eff.


- 1. Se déplacer horizontalement de la pression de chaudière jusqu'à la pression de revaporisation A
- 2. Descendre verticalement jusqu'au débit de déconcentration en kg/h B
- Suivre la courbe vers la droite jusqu'au bout de celle-ci et se déplacer horizontalement jusqu'à la même pression de revaporisation C
- Remonter jusqu'à la dimension du vase de revaporisation. Sélectionner le vase. Dans ce cas, un vase FV8 est requis.

Exemple: 2 (traits interrompus)

Une unité, fonctionnant à 11 bar eff., condense 4 000 kg/h de vapeur. La vapeur de revaporisation sera enregistrée à 0,5 bar eff.

- 1. Se déplacer horizontalement de la pression du purgeur jusqu'à la pression de revaporisation A1
- 2. Descendre verticalement jusqu'au débit de condensats en kg/h B1
- Suivre la courbe vers la droite jusqu'au bout de celle-ci et se déplacer horizontalement jusqu'à la même pression de revaporisation C1
- 4. Remonter jusqu'à la dimension du vase de revaporisation. Sélectionner le vase. Dans ce cas, un vase FV12 est requis.



Dimensions et Poids (approximatives) en mm et kg

	FV6	FV8	FV12	FV15	FV18
Α	168	219	324	406	457
В	104	210	262	303	329
С	370	413	418	390	514
D	620	663	668	640	764
E	1225	1391	1400	1275	1521
F	230	281	411	492	544
G	2"	DN80	DN100	DN150	DN150
Н	2"	2"	2"	DN80	DN80
J	2"	DN80	DN100	DN150	DN150
K	3/8"	3/8"	3/8"	3/8"	3/8"
L	3/4"	1"	1½"	11/2"	2"
М	2"	2"	2"	2"	2"
Poids	45	76	130	150	193

Installation

Le vase de revaporisation doit être installé avec la sortie vapeur de revaporisation orientée vers le haut. Chaque vase est fourni avec un piquage %" pour un manomètre. Pour l'évacuation des condensats, il est recommandé d'installer un purgeur à flotteur. Un piquage pour une soupape de sûreté est prévu. Cependant, il n'est pas certain que la soupape de sûreté soit de la même dimension que le raccordement. La dimension et la sélection de la soupape doivent être en accord avec les réglementations nationales ou locales.

+ particules solides

En cas de commande

Exemple: 1 vase de revaporisation FV6 Spirax Sarco avec raccordements taraudés BSP. L'appareil est fabriqué en accord avec la norme ASME VIII DIV 1 2004 + ADD06.