


IM-S60-24 ST Indice 1 08.13

# Filtres à panier ou Type "T" Fig B34 et Fig B36

## Notice de montage et d'entretien



- 1. Informations de sécurité
- 2. Informations générales
- 3. Installation
- 4. Mise en service
- 5. Fonctionnement
- 6. Recherche d'erreurs
- 7. Entretien
- 8. Pièces de rechange

Le fonctionnement en toute sécurité de ces appareils ne peut être garanti que s'ils ont été convenablement installés, mis en service, ou utilisés et entretenus par du personnel qualifié (voir paragraphe 1.11) et cela en accord avec les instructions d'utilisation. Les instructions générales d'installation et de sécurité concernant vos tuyauteries ou la construction de votre unité ainsi que celles relatives à un bon usage des outils et des systèmes de sécurité doivent également s'appliquer.

#### 1.1 Intentions d'utilisation

En se référant à la notice de montage et d'entretien, à la plaque-firme et au feuillet technique, vérifier que l'appareil est conforme à l'application et à vos intentions d'utilisation.

Ces appareils sont conformes aux réquisitions de la Directive Européenne 97/23/CE sur les équipements à pression (PED - Pressure Equipement Directive) et doivent porter le marquage (€, sauf s'ils sont soumis à l'Art. 3.3. Ces appareils tombent dans les catégories de la PED suivantes :

| Appareils     |               | Groupe 1<br>Gaz | Groupe 2<br>Gaz | Groupe 1<br>Liquides | Groupe 2<br>Liquides |
|---------------|---------------|-----------------|-----------------|----------------------|----------------------|
|               | DN40 - DN100  | 2               | 1               | 2                    | Art. 3.3             |
| Fig B34       | DN125 - DN200 | 3               | 2               | 2                    | Art. 3.3             |
| et<br>Fig B36 | DN250         | 3               | 2               | 2                    | 1                    |
|               | DN300 - DN350 | 3               | 3               | 2                    | 1                    |

- i) Ces appareils ont été spécifiquement conçus pour une utilisation avec des liquides ou des gaz qui appartiennent au Groupe 1 et 2 de la Directive sur les appareils à pression. Ces appareils peuvent être utilisés sur d'autres fluides, mais dans ce cas là, Spirax Sarco doit être contacté pour confirmer l'aptitude de ces appareils pour l'application considérée.
- ii) Vérifier la compatibilité de la matière, la pression et la température ainsi que leurs valeurs maximales et minimales. Si les limites maximales de fonctionnement de l'appareil sont inférieures aux limites de l'installation sur laquelle il est monté, ou si un dysfonctionnement de l'appareil peut entraîner une surpression ou une surchauffe dangereuse, s'assurer que le système possède les équipements de sécurité nécessaires pour prévenir ces dépassements de limites.
- iii) Déterminer la bonne implantation de l'appareil et le sens d'écoulement du fluide.
- iv) Les produits Spirax Sarco ne sont pas conçus pour résister aux contraintes extérieures générées par les systèmes quelconques auxquels ils sont reliés directement ou indirectement. Il est de la responsabilité de l'installateur de considérer ces contraintes et de prendre les mesures adéquates de protection afin de les minimiser.
- v) Ôter les couvercles de protection sur tous les raccordements et le film protecteur de toutes les plaquesfirmes avant l'installation sur des circuits vapeur ou autres applications à haute température.

#### 1.2 Accès

S'assurer d'un accès sans risque et prévoir, si nécessaire, une plate-forme de travail correctement sécurisée, avant de commencer à travailler sur l'appareil. Si nécessaire, prévoir un appareil de levage adéquat.

#### 1.3 Eclairage

Prévoir un éclairage approprié et cela plus particulièrement lorsqu'un travail complexe ou minutieux doit être effectué.

#### 1.4 Canalisation avec présence de liquides ou de gaz dangereux

Toujours tenir compte de ce qui se trouve, ou de ce qui s'est trouvé dans la conduite : matières inflammables, matières dangereuses pour la santé, températures extrêmes.

#### 1.5 Ambiance dangereuse autour de l'appareil

Toujours tenir compte des risques éventuels d'explosion, de manque d'oxygène (dans un réservoir ou un puits), de présence de gaz dangereux, de températures extrêmes, de surfaces brûlantes, de risque d'incendie (lors, par exemple, de travail de soudure), de bruit excessif, de machineries en mouvement.

#### 1.6 Le système

Prévoir les conséquences d'une intervention sur le système complet. Une action entreprise (par exemple, la fermeture d'une vanne d'arrêt ou l'interruption de l'électricité) ne constitue-t-elle pas un risque pour une autre partie de l'installation ou pour le personnel ?

Liste non exhaustive des types de risque possible : fermeture des évents, mise hors service d'alarmes ou d'appareils de sécurité ou de régulation. Eviter la génération de chocs thermiques ou de coups de bélier par la manipulation lente et progressive des vannes d'arrêt.

#### 1.7 Système sous pression

S'assurer de l'isolement de l'appareil et le dépressuriser en sécurité vers l'atmosphère. Prévoir si possible un double isolement et munir les vannes d'arrêt en position fermée d'un système de verrouillage ou d'un étiquetage spécifique. Ne pas considérer que le système est dépressurisé sur la seule indication du manomètre.

#### 1.8 Température

Attendre que l'appareil se refroidisse avant toute intervention, afin d'éviter tous risques de brûlures.

#### 1.9 Outillage et pièces de rechange

S'assurer de la disponibilité des outils et pièces de rechange nécessaires avant de commencer l'intervention. N'utiliser que des pièces de rechange d'origine Spirax Sarco.

#### 1.10 Equipements de protection

Vérifier s'il n'y a pas d'exigences de port d'équipements de protection contre les risques liés par exemple : aux produits chimiques, aux températures élevées ou basses, au niveau sonore, à la chute d'objets, ainsi que contre les blessures aux yeux ou autres.

#### 1.11 Autorisation d'intervention

Tout travail doit être effectué par, ou sous la surveillance, d'un responsable qualifié.

Le personnel en charge de l'installation et l'utilisation de l'appareil doit être formé pour cela en accord avec la notice de montage et d'entretien. Toujours se conformer au règlement formel d'accès et de travail en vigueur. Sans règlement formel, il est conseillé que l'autorité, responsable du travail, soit informée afin qu'elle puisse juger de la nécessité ou non de la présence d'une personne responsable pour la sécurité. Afficher "les notices de sécurité" si nécessaire.

#### 1.12 Manutention

La manutention des pièces encombrantes ou lourdes peut être la cause d'accident. Soulever, pousser, porter ou déplacer des pièces lourdes par la seule force physique peut être dangereuse pour le dos. Vous devez évaluer les risques propres à certaines tâches en fonction des individus, de la charge de travail et l'environnement et utiliser les méthodes de manutention appropriées en fonction de ces critères.

#### 1.13 Résidus dangereux

En général, la surface externe des appareils est très chaude. Si vous les utilisez aux conditions maximales de fonctionnement, la température en surface peut être supérieure à 538°C.

Certains appareils ne sont pas équipés de purge automatique. En conséquence, toutes les précautions doivent être prises lors du démontage ou du remplacement de ces appareils (se référer à la notice de montage et d'entretien).

#### 1.14 Risque de gel

Des précautions doivent être prises contre les dommages occasionnés par le gel, afin de protéger les appareils qui ne sont pas équipés de purge automatique.

#### 1.15 Recyclage

Ces appareils sont recyclables. Aucun danger écologique n'est à considérer avec le recyclage de ces produits.

#### 1.16 Retour des appareils

Pour des raisons de santé, de sécurité et de protection de l'environnement, les clients et les dépositaires doivent fournir toutes les informations nécessaires, lors du retour des appareils. Cela concerne les précautions à suivre au cas où ceux-ci auraient été contaminés par des résidus ou endommagés mécaniquement. Ces informations doivent être fournies par écrit en incluant les risques pour la santé et en mentionnant les caractéristiques techniques pour chaque substance identifiée comme dangereuse ou potentiellement dangereuse.

## 2. Informations générales

#### 2.1 Description générale

Les filtres à panier type Fig. B34 et B36 ont été conçus pour un montage sur une tuyauterie horizontale et ont un bouchon de purge sous le corps pour vidanger l'appareil. Les filtres type Fig. B34 "T" et B36 "T" ont été conçus pour un montage sur une tuyauterie verticale et a un bouchon de purge sur le côté du corps pour vidanger l'appareil. Ces filtres sont fournis avec des brides intégrées et ont une crépine en acier inox de perforation 3 mm en standard et le couvercle est taraudé pour fixer un oeil de levage.

- DN125 et DN150 perçage de %" UNC-2B.
- DN200 à DN350 perçage de %" UNC-2B.

#### Crépines en options - Disponibles sur demande pour toutes les diamètres :

- Crépine en acier inox de perforations 0,8 mm
- Crépine en acier inox de perforations 1,6 mm
- Crépine en acier inox de Mesh 40
- Crépine en acier inox de Mesh 100

#### **Normalisation**

Cet appareil est en conformité avec la Directive Européenne sur les appareils à pression 97/23/CE et porte la marque ← lorsque c'est nécessaire.

#### Certification

Cet appareil est disponible avec un certificat EN 10204 3.1 et une approbation NACE. **Nota** : Toutes demandes de certificats/inspections doivent être faites lors de la passation de commande.

#### Options - Disponible avec supplément de prix

**Raccordements pour manomètres -** Des bossages sont disponibles en aval et en amont de la crépine,qui peuvent être percés et taraudés pour l'adjonction de manomètres.

Le couvercle peut être percé et taraudé pour mettre un purgeur d'air - Si vous voulez utiliser cet appareil sur une ligne verticale (position "T") le corps doit être purgé des condensats via le bouchon de vidange situé sur le coté du corps du filtre.

#### 2.2 Diamètres et raccordements

DN40 à DN350

#### A brides:

- EN 1092 PN16, PN25 et PN40
- ASME B16.5 Classe 150 et 300

#### Dimensions face à face suivants :

- EN 558 série 1 pour le PN
- ASME B16.10 Classe 150 pour plage ASME Classe 150
- ASME B16-10 Classe 300 pour plage ASME Classe 300

#### 2.3 Valeurs de Kv

| Diamètre | DN40 | DN50 | DN65 | DN80 | DN100 | DN125 | DN150 | DN200 | DN250 | DN300 | DN350 |
|----------|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|
| Kv       | 25   | 43   | 84   | 156  | 353   | 488   | 748   | 1869  | 3686  | 5244  | 8100  |

Pour conversion : Cv (UK) - Kv x 0,963 Cv (US) = Kv x 1,156

### 2.4 Construction

| Rep. | Désignation | Matière              |          |                                    |
|------|-------------|----------------------|----------|------------------------------------|
| 1    | Corno       | Acier carbone        | Fig. B34 | EN 10213 1.0619+N et ASTM A216 WCB |
|      | Corps       | Acier inox           | Fig. B36 | EN 10213 1.4308 et ASTM A351-CF8   |
| 2    | Couvercle   | Acier carbone        | Fig. B34 | EN 10213 1.0619+N et ASTM A216 WCB |
| 2    | Couvercie   | Acier inox           | Fig. B36 | EN 10213 1.4308 et ASTM A351-CF8   |
| 3    | Crépine     | Acier inox           |          |                                    |
| 4    | Joint       | Graphite exfolié ren | forcé    |                                    |
| 5    | Cauiana     | Acier carbone        | Fig. B34 | ASTM A193 Gr. B7                   |
| 5    | Goujons     | Aciei carbone        | Fig. B36 | ASTM A193 Gr. B8M2                 |
|      | Forous      | Acier carbone        | Fig. B34 | ASTM A194 Gr. 2H                   |
|      | 6 Ecrous    | Aciei carbone        | Fig. B36 | ASTM A194 Gr. 8M                   |

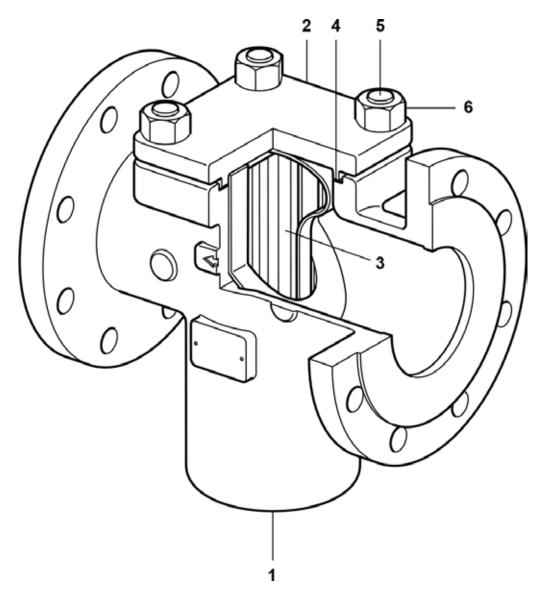
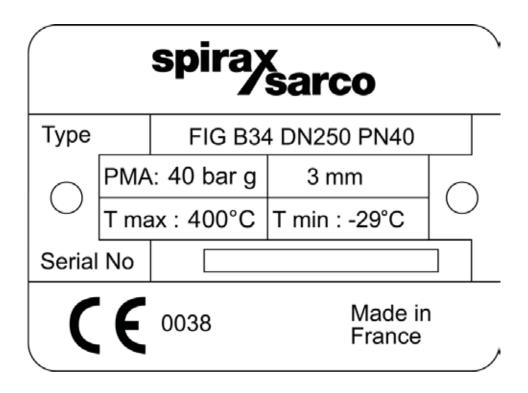
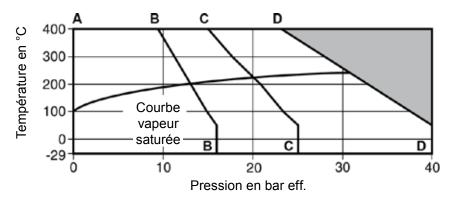
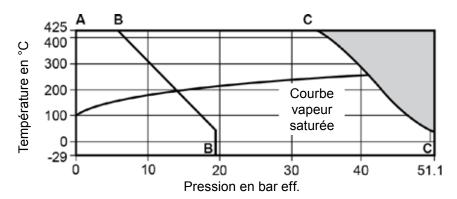
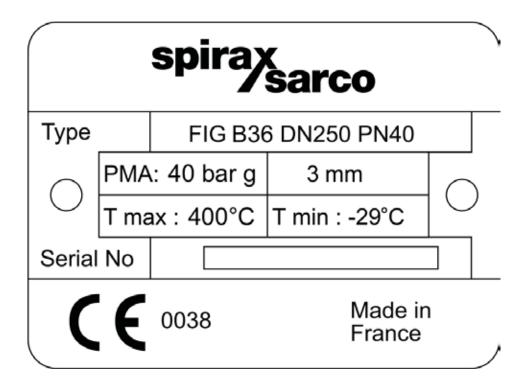





Fig. 1 - Fig. B34 et Fig. B36

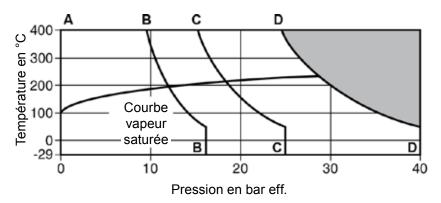
### 2.5 Plaque firme - Fig. B34




## 2.6 Limites pression / température - Fig. B34 Brides PN16, PN25 et PN40

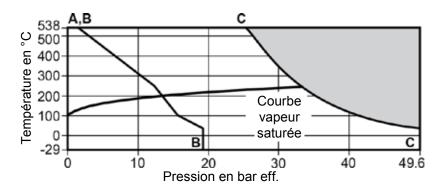



|           |                                  | Condition de calcul du corps               | PN16                  |
|-----------|----------------------------------|--------------------------------------------|-----------------------|
|           | PMA Pression maximale admissible | 16 bar eff à 50°C                          |                       |
|           |                                  | TMA Température maximale admissible        | 400°C à 9,5 bar eff.  |
| A - B - B | PN16                             | Température minimale admissible            | -29°C                 |
| A-D-D     | FINIO                            | PMO Pression maximale de fonctionnement    | 13,4 bar eff. à 193°C |
|           |                                  | TMO Température maximale de fonctionnement | 400°C à 9,5 bar eff.  |
|           |                                  | Température minimale de fonctionnement     | -29°C                 |
|           |                                  | Pression d'épreuve hydraulique             | 24 bar eff.           |
|           |                                  | Condition de calcul du corps               | PN25                  |
|           |                                  | PMA Pression maximale admissible           | 25 bar eff à 50°C     |
|           |                                  | TMA Température maximale admissible        | 400°C à 14,8 bar eff. |
| A - C - C | PN25                             | Température minimale admissible            | -29°C                 |
| A-C-C     | FNZS                             | PMO Pression maximale de fonctionnement    | 20,5 bar eff. à 217°C |
|           |                                  | TMO Température maximale de fonctionnement | 400°C à 14,8 bar eff. |
|           |                                  | Température minimale de fonctionnement     | -29°C                 |
|           |                                  | Pression d'épreuve hydraulique             | 37,5 bar eff.         |
|           |                                  | Condition de calcul du corps               | PN40                  |
|           |                                  | PMA Pression maximale admissible           | 40 bar eff à 50°C     |
|           |                                  | TMA Température maximale admissible        | 400°C à 23,8 bar eff. |
| A - D - D | PN40                             | Température minimale admissible            | -29°C                 |
| K-D-D     | A - D - D PN40                   | PMO Pression maximale de fonctionnement    | 31,2 bar eff. à 236°C |
|           |                                  | TMO Température maximale de fonctionnement | 400°C à 23,8 bar eff. |
|           |                                  | Température minimale de fonctionnement     | -29°C                 |
|           |                                  | Pression d'épreuve hydraulique             | 60 bar eff.           |


## 2.6 Limites pression / température - Fig. B34 (suite) Brides ASME Classe 150 et Classe 300



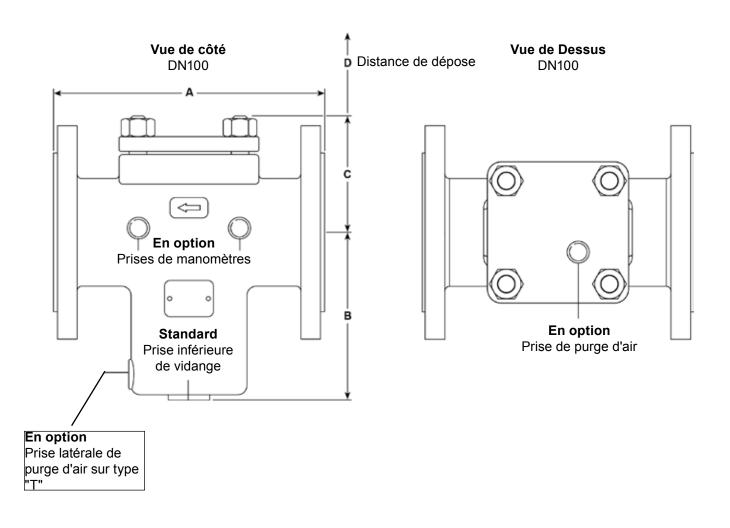
|           |                      | Condition de calcul du corps               | ASME Classe 150       |
|-----------|----------------------|--------------------------------------------|-----------------------|
|           |                      | PMA Pression maximale admissible           | 19,6 bar eff à 38°C   |
|           |                      | TMA Température maximale admissible        | 425°C à 5,5 bar eff.  |
| A - B - B | D D 40ME 450         | Température minimale admissible            | -29°C                 |
| A - D - D | ASME 150             | PMO Pression maximale de fonctionnement    | 13,9 bar eff. à 197°C |
|           |                      | TMO Température maximale de fonctionnement | 425°C à 5,5 bar eff.  |
|           |                      | Température minimale de fonctionnement     | -29°C                 |
|           |                      | Pression d'épreuve hydraulique             | 29,4 bar eff.         |
|           |                      | Condition de calcul du corps               | ASME Classe 300       |
|           |                      | PMA Pression maximale admissible           | 51,1 bar eff à 38°C   |
|           |                      | TMA Température maximale admissible        | 425°C à 28,8 bar eff. |
| A 0 0     | A ON IT 200          | Température minimale admissible            | -29°C                 |
| A - C - C | ASME 300 -<br>-<br>- | PMO Pression maximale de fonctionnement    | 42 bar eff. à 255°C   |
|           |                      | TMO Température maximale de fonctionnement | 425°C à 28,8 bar eff. |
|           |                      | Température minimale de fonctionnement     | -29°C                 |
|           |                      | Pression d'épreuve hydraulique             | 77 bar eff.           |




## 2.8 Limites pression / température - Fig. B36 Brides PN16, PN25 et PN40



|           |                | Condition de calcul du corps               | PN16                  |
|-----------|----------------|--------------------------------------------|-----------------------|
|           |                | PMA Pression maximale admissible           | 16 bar eff à 50°C     |
|           |                | TMA Température maximale admissible        | 400°C à 9,5 bar eff.  |
| A - B - B | PN16           | Température minimale admissible            | -29°C                 |
| A-D-D     | FINIO          | PMO Pression maximale de fonctionnement    | 12.1 bar eff. à 192°C |
|           |                | TMO Température maximale de fonctionnement | 400°C à 9,5 bar eff.  |
|           |                | Température minimale de fonctionnement     | -29°C                 |
|           |                | Pression d'épreuve hydraulique             | 24 bar eff.           |
|           |                | Condition de calcul du corps               | PN25                  |
|           |                | PMA Pression maximale admissible           | 25 bar eff à 50°C     |
|           |                | TMA Température maximale admissible        | 400°C à 15,1 bar eff. |
| A - C - C | PN25           | Température minimale admissible            | -29°C                 |
| A-C-C     | PNZ5           | PMO Pression maximale de fonctionnement    | 18,4 bar eff. à 209°C |
|           |                | TMO Température maximale de fonctionnement | 400°C à 15,1 bar eff. |
|           |                | Température minimale de fonctionnement     | -29°C                 |
|           |                | Pression d'épreuve hydraulique             | 37,5 bar eff.         |
|           |                | Condition de calcul du corps               | PN40                  |
|           |                | PMA Pression maximale admissible           | 40 bar eff à 50°C     |
|           | A - D - D PN40 | TMA Température maximale admissible        | 400°C à 24,1 bar eff. |
| 4 D D     |                | Température minimale admissible            | -29°C                 |
| A - D - D |                | PMO Pression maximale de fonctionnement    | 28,7 bar eff. à 232°C |
|           |                | TMO Température maximale de fonctionnement | 400°C à 24,1 bar eff. |
|           |                | Température minimale de fonctionnement     | -29°C                 |
|           |                | Pression d'épreuve hydraulique             | 60 bar eff.           |


## 2.8 Limites pression / température - Fig. B36 (suite) Brides ASME Classe 150 et Classe 300



|              |                             | Condition de calcul du corps               | ASME Classe 150       |
|--------------|-----------------------------|--------------------------------------------|-----------------------|
|              |                             | PMA Pression maximale admissible           | 19 bar eff à 38°C     |
|              |                             | TMA Température maximale admissible        | 538°C à 1,4 bar eff.  |
| <b>A</b> D D | A CME 150                   | Température minimale admissible            | -29°C                 |
| A - B - B    | ASME 150                    | PMO Pression maximale de fonctionnement    | 13,3 bar eff. à 195°C |
|              |                             | TMO Température maximale de fonctionnement | 538°C à 1,4 bar eff.  |
|              |                             | Température minimale de fonctionnement     | -29°C                 |
|              |                             | Pression d'épreuve hydraulique             | 28,5 bar eff.         |
|              |                             | Condition de calcul du corps               | ASME Classe 300       |
|              |                             | PMA Pression maximale admissible           | 49,6 bar eff à 38°C   |
|              |                             | TMA Température maximale admissible        | 538°C à 24,4 bar eff. |
| A 0 0        | C ASME 300 -<br>-<br>-<br>- | Température minimale admissible            | -29°C                 |
| A - C - C    |                             | PMO Pression maximale de fonctionnement    | 33 bar eff. à 241°C   |
|              |                             | TMO Température maximale de fonctionnement | 538°C à 24,4 bar eff. |
|              |                             | Température minimale de fonctionnement     | -29°C                 |
|              |                             | Pression d'épreuve hydraulique             | 74,4 bar eff.         |

### 2.9 Dimensions et Poids (approximatifs) en mm et kg

|                |          |     |     | Dimer | nsions |       |     | Ро    | ids   |
|----------------|----------|-----|-----|-------|--------|-------|-----|-------|-------|
| Plage du corps | Diamètre |     | Α   |       | В      | С     | D   | DN    | ACME  |
| 00.00          |          | PN  | 150 | 300   |        |       |     | PN    | ASME  |
|                | DN40     | 200 | 165 | 229   | 121,5  | 71,5  | 150 | 14,0  | 15,0  |
|                | DN50     | 230 | 203 | 267   | 131,5  | 79,0  | 170 | 16,0  | 16,5  |
| DN146          | DN65     | 290 | 216 | 292   | 152,0  | 97,5  | 190 | 19,0  | 20,0  |
| PN40           | DN80     | 310 | 241 | 318   | 161,0  | 114,5 | 210 | 30,0  | 33,0  |
| PN25           | DN100    | 350 | 292 | 350   | 181,0  | 125,5 | 250 | 35,5  | 42,5  |
| PN16           | DN125    | 400 | 330 | 400   | 218,5  | 148,0 | 290 | 67,0  | 74,5  |
| ASME 150<br>et | DN150    | 480 | 356 | 444   | 238,5  | 174,5 | 330 | 76,0  | 86,5  |
| ASME 300       | DN200    | 600 | 495 | 559   | 290,5  | 206,0 | 400 | 166,0 | 175,0 |
| ASIVIL 300     | DN250    | 730 | 622 | 622   | 325,5  | 244,0 | 480 | 205,0 | 210,5 |
|                | DN300    | 850 | 698 | 711   | 368,5  | 307,5 | 550 | 341,5 | 369,5 |
|                | DN350    | 980 | 787 | 838   | 383,5  | 322,0 | 600 | 459,5 | 426,5 |



|                |          |                  | Taraudage                  |           |                              |  |  |  |  |
|----------------|----------|------------------|----------------------------|-----------|------------------------------|--|--|--|--|
| Plage du       | Diamètre | Standard         | Option                     |           |                              |  |  |  |  |
| corps          |          | Purge inférieure | Purge latérale<br>Type "T" | Manomètre | Purge d'air sur le couvercle |  |  |  |  |
|                | DN40     | 1/2"             | 3/8"                       | 1/4"      | 1/4"                         |  |  |  |  |
|                | DN50     | 1/2"             | 3/8"                       | 1/4"      | 1/4"                         |  |  |  |  |
|                | DN65     | 3/4"             | 1/2"                       | 1/4"      | 1/4"                         |  |  |  |  |
| PN40           | DN80     | 3/4"             | 1/2"                       | 1/4"      | 1/4"                         |  |  |  |  |
| PN25           | DN100    | 3/4"             | 1/2"                       | 1/4"      | 1/4"                         |  |  |  |  |
| PN16           | DN125    | 1½"              | 3/"                        | 1/4"      | 1/4"                         |  |  |  |  |
| ASME 150       | DN150    | 1½"              | 3/"                        | 1/4"      | 1/4"                         |  |  |  |  |
| et<br>ASME 300 | DN200    | 1½"              | 3/"                        | 1/4"      | 1/4"                         |  |  |  |  |
| ASIVIL 300     | DN250    | 1½"              | 3/"                        | 1/4"      | 1/2"                         |  |  |  |  |
|                | DN300    | 2"               | 1"                         | 1/4"      | 1/2"                         |  |  |  |  |
|                | DN350    | 2"               | 1"                         | 1/4"      | 1/2"                         |  |  |  |  |

| Plage       |          | Surface                    |     | Ouvertu | re en % |             | Ra   | tio ouver | ture / enti | rée         |
|-------------|----------|----------------------------|-----|---------|---------|-------------|------|-----------|-------------|-------------|
| du<br>corps | Diamètre | de<br>filtration<br>en cm² | 3,0 | 1,6     | 0,8     | M100<br>M40 | 3,0  | 1,6       | 0,8         | M100<br>M40 |
|             | DN40     | 139                        |     |         |         |             | 3,54 | 3,32      | 2,88        | 2,53        |
|             | DN50     | 216                        |     |         |         |             | 3,52 | 3,30      | 2,86        | 2,51        |
| PN40        | DN65     | 343                        |     |         |         |             | 3,31 | 3,10      | 2,69        | 2,36        |
| PN25        | DN80     | 590                        |     |         |         |             | 3,76 | 3,52      | 3,05        | 2,68        |
| PN16        | DN100    | 916                        |     |         |         |             | 3,73 | 3,50      | 3,03        | 2,66        |
| ASME<br>150 | DN125    | 1191                       | 32% | 30%     | 26%     | 23%         | 3,11 | 2,91      | 2,52        | 2,22        |
| et          | DN150    | 1692                       |     |         |         |             | 3,06 | 2,87      | 2,49        | 2,19        |
| ASME        | DN200    | 3486                       |     |         |         |             | 3,55 | 3,33      | 2,89        | 2,54        |
| 300         | DN250    | 5223                       |     |         |         |             | 3,40 | 3,19      | 2,77        | 2,43        |
|             | DN300    | 7379                       |     |         |         |             | 3,34 | 3,13      | 2,71        | 2,39        |
|             | DN350    | 9597                       |     |         |         |             | 3,19 | 2,99      | 2,59        | 2,28        |

### 3. Installation

Nota : Avant de procéder à l'installation, consulter les "Informations de sécurité" du chapitre 1.

En se référant à la notice de montage et d'entretien, au feuillet technique et à la plaque-firme, vérifier que l'appareil est adapté à l'application considérée.

- **3.1** Vérifier les matières, la pression et la température ainsi que leurs valeurs maximales. Si les limites maximales de fonctionnement de l'appareil sont inférieures à celles du système sur lequel il doit être monté, vérifier qu'un dispositif est inclus au système pour prévenir les dépassements de limites de résistance.
- 3.2 Déterminer la bonne implantation pour l'appareil et le sens d'écoulement du fluide.
- **3.3** Ôter les bouchons de protection sur tous les raccordements et le film protecteur de toutes les plaques-firmes avant l'installation sur des circuits vapeur ou autres applications à haute température.
- 3.4 Les filtres peuvent être montés sur les circuits de liquides, de vapeur ou de gaz sur une tuyauterie horizontale ou verticale avec le sens d'écoulement du fluide indiqué par la flèche de coulée du corps. Utiliser le filtre à panier pour les applications horizontales et prendre le filtre Type "T" pour les applications verticales avec le fluide descendant.
- **3.5** Des robinets d'isolation peuvent être installés pour permettre l'entretien et le remplacement du filtre en toute sécurité.
- 3.6 Les filtres peuvent être calorifugés si nécessaire.

## 4. Mise en service

Après installation ou entretien, s'assurer que le système est complètement opérationnel. Effectuer un essai des alarmes ou des appareils de protection.

## — 5. Fonctionnement —

Les filtres sont des appareils statiques qui interdisent uniquement le passage des impuretés dont la taille est supérieure à celle des trous de l'élément filtrant. La perte de charge à travers le filtre augmente avec l'encrassement de la crépine. Il est conseillé de vidanger le filtre et de nettoyer régulièrement l'élément filtrant.

## - 6. Recherche d'erreurs —————

| Symptôme                                   | Cause possible         | Remède                                                     |
|--------------------------------------------|------------------------|------------------------------------------------------------|
| Pas de débit à travers le filtre           | La crépine est bouchée | Nettoyer ou remplacer la crépine<br>Voir le paragraphe 7.2 |
|                                            | Le système est isolé   | Vérifier les robinets d'isolement                          |
| Augmentation de la pression dans le filtre | La crépine est bloquée | Nettoyer ou remplacer la crépine<br>Voir le paragraphe 7.2 |

IM-S60-24 ST Indice 1 spirax sarco 15

#### 7. Entretien

Nota : Avant de procéder à l'entretien, consulter les "Informations de sécurité" du chapitre 1.

#### **Attention**

Le joint de couvercle du filtre contient de fines lamelles en acier inox qui pourraient causer des blessures s'il n'est pas manipulé avec soins.

#### 7.1 Information générale

L'entretien peut être effectué avec le filtre sur la ligne, une fois que les procédures de sécurité ont été observées. Il est recommandé d'utiliser de nouveaux joints à chaque entretien.

Avant toute intervention, le filtre doit être correctement isolé et la pression à l'intérieur de l'appareil doit être nulle. Avant tout démontage, attendre que l'appareil soit froid. Lors du remontage, s'assurer que les faces de joints sont propres.

#### 7.2 Nettoyage ou remplacement de la crépine

Se référer au chapitre 8 'Pièces de rechange', pour l'identification des pièces.

- Enlever le couvercle du filtre (2) en dévissant les écrous de couvercle (6) des goujons de couvercle (5). Le nombre d'écrous et de goujons utilisé, dépend du diamètre et de la matière du filtre et de plage de conception (PN / ASME).
- Une fois le couvercle enlevé, la crépine (3) peut être retirée.
- Nettoyer la crépine (3) ou la remplacer si nécessaire.
- Remonter la crépine (3) en la poussant dans le fond du corps (1).
- Toujours utiliser un nouveau joint de couvercle (4) après s'être assuré que les faces de joints sont propres.
- Remonter le couvercle (2) du filtre en utilisant une pâte anti-grippage sur les écrous et goujons (5 + 6) et serrer.
  Attention : S'assurer que les écrous (6) de couvercle sont serrer uniformément avant d'appliquer le couple de serrage final Voir le tableau 1 pour les couples de serrage.
- Vérifier l'étanchéité.

Tableau 1 - Couples de serrage recommandés

| •        |          |               | 1            |
|----------|----------|---------------|--------------|
| Diamètre | Quantité | Dimensions    | Couple (N m) |
| DN40     | 4        | ½" - 13 UNC   | 15           |
| DN50     |          |               | 22           |
| DN65     | 4        | %" - 11 UNC   | 40           |
| DN80     | 4        | ³⁄4" - 10 UNC | 70           |
| DN100    |          |               | 100          |
| DN125    | 6        |               | 100          |
| DN150    | 6        | ⅓" - 11 UNC   | 160          |
| DN200    | 8        |               | 205          |
| DN250    | 12       |               | 205          |
| DN300    | 12       | 11/8" - 7 UNC | 375          |
| DN350    | 14       |               | 420          |

## 8. Pièces de rechange

Les pièces de rechange disponibles sont représentées en trait plein.

Les pièces en trait interrompu ne sont pas fournies comme pièces de rechange.

#### Pièces de rechange disponibles

| Crépine de filtre                              |      |
|------------------------------------------------|------|
| (Préciser la matière, le diamètre du filtre et |      |
| le diamètre de perforation)                    |      |
| Joint de couvercle (paquet de 3)               | 3    |
| Jeu de goujons et d'écrous de couvercle        | 5, 6 |
| -                                              |      |

#### En cas de commande

Toujours utiliser les descriptions données ci-dessus dans la colonne "Pièces de rechange" et spécifier le type et le diamètre du filtre.

**Exemple :** 1 - Crépine en acier inox de perforation 3 mm pour filtre Fig. B36 - DN250.

Nota : Lorsque que vous commandez un crépine, il est recommandé de commander également un joint de couvercle (paquet de 3 pièces).

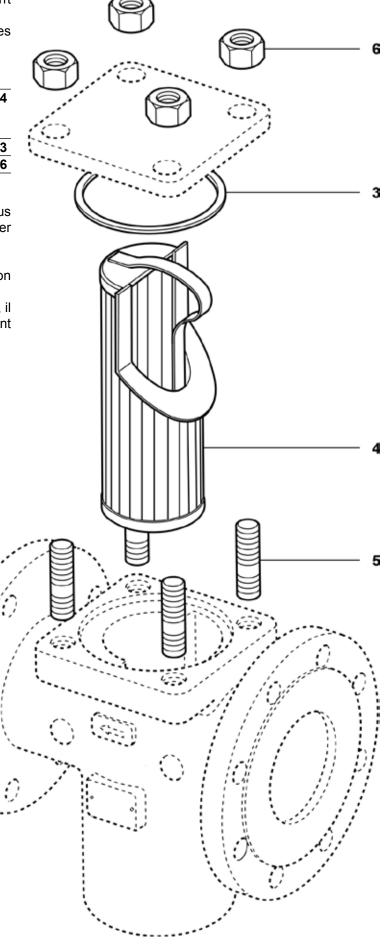



Fig. 2



SPIRAX SARCO SAS

ZI des Bruyères - 8, avenue Le verrier - BP 61 78193 TRAPPES Cedex

Téléphone: 01 30 66 43 43 Télécopie: 01 30 66 11 22 e-mail: Courrier@fr.SpiraxSarco.com

www.spiraxsarco.com



**IM-S60-24** ST Indice 1 08.13