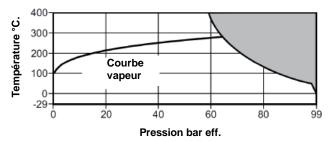


GILFLO-ILVA Capteur DN50 - DN200

Description

Débitmètre à orifice variable avec ressort de compensation. Il engendre une pression différentielle dont le rapport avec le débit suit une loi linéaire. Conçu pour la mesure de débit de gaz ainsi que pour la plupart des fluides industriels y compris la vapeur saturée et surchaufée. Voir fiche séparée pour une description génélale d'un poste de débitmètre type ILVA.

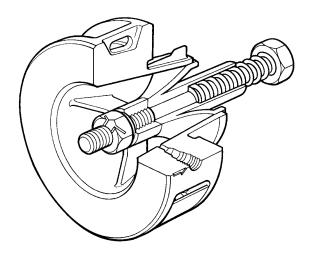
Diamètres et raccordements


DN 50,80, 100, 150 et 200. DN250 & DN300 : voir fiche technique spécifique. Pour montage entre brides: EN 1092 PN 16, 25 et 40 ASME B 16.5 Class 150, 300 et 600 JIS20, KS20

Le Gilflo ILVA doit être installé dans des tuyauteries BS1600 ou ANSI/ASME B36.10 Schedule 40. Si la tuyauterie n'est pas selon ce standard, et que le débitmètre fonctionne vers sa capacité, une manchette en BS1600 ou ASME B36.10 Schedule 40 doit être installée en aval du transducteur.

Construction

Partie	Matière	
Corps	Inox	S.316 (CF8M/1.4408)
Pièces internes	Inox	431 S29 / S303 / S304 / S316
Ressort	Inox	Inconel X750


Limites d'emploi

Ne pas utiliser dans cette zone

Pression d'épreuve hydraulique maximale

Corps	ASME 600
PMA Pression max. admissible	102 bar eff. @ 20°C
TMA Température max. admissible	400°C @ 59 bar eff.
Température minimale	- 50°C
PMO Pression de service max.: selon spécifica	ation des brides.
Pression de service minimale	0,6 bar eff.
TMO Température de service maximale.	400°C @ 40 bar eff.
Température de service minimale	- 29°C
Note:	
contactez SxS pour des températures de travail	plus bas.
Viscosité maximale	30 centipoise
ΔPMX Pression différentielle max.	498 mbar

Caractéristiques

Le Gilflo ILVA a été conçu pour être utilisé en conjonction avec les microprocesseurs de Spirax Sarco ou avec l'indicateur M750. La linéarisation peut également se produire par l'électronique de l'utilisateur.

Remarque: Le transmetteur de débit Scanner 2000 est configuré pour un transducteur spécifique et doit toujours être installé avec ce transducteur. Le numéro de série du transducteur est mentionné sur l'étiquette du Scanner 2000 et vice versa

Perte de charge

Le capteur GILFLO-ILVA provoque une perte de charge de 498 mbar à débit maximal.

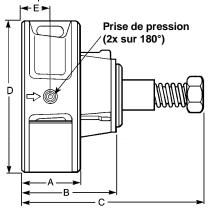
Débits

Pour déterminer le débit maximum d'un Gilflo ILVA, il y a lieu de calculer l'équivalence du débit d'eau en l/min. Se reporter au chapitre "Dimensionnement du Gilflo ILVA"

Spécification

Capteur Gilflo ILVA de Spirax Sarco, DN 150 pour montage entre brides EN 1092 PN 40. Corps en acier inox 316.

Fluide: vapeur saturée à 10 bar. Débit maximum: 8000 kg/h.


155 bar eff.

GILFLO-ILVA Fiche Technique

Dimensions/poids (approximatives) en mm/kg

DN	Α	В	С	D	Е	Poids (kg)
50	35	63	140	103	17,5	2,0
80	45	78	150	138	22,5	3,9
100	60	103	205	162	37,5	8,3
150	75	134	300	218	37,5	14,2
200	85	161	360	273	42,5	23,6

Note: les prises de pression sont taraudées ¼" NPT.

Sécurité, montage & entretien

Toutes les instructions d'installation sont contenues dans une notice séparée fournie avec chaque appareil.

Les points importants ci-dessous serviront de guide :

1. La longueur de tuyauterie rectiligne et ininterrompue devra être au minimum égale à six diamètres de tuyauterie en amont et à trois diamètres en aval. Eviter l'installation de vannes, accessoires ou des changements de diamètres sur ces tuyauteries. Le diamètre nominal de la tuyauterie rectiligne devra être le même que celui du capteur Gilflo ILVA.

Si la conduite en amont du capteur est plus grande que le DN du Gilflo, une longueur de tuyauterie rectiligne et ininterrompue du même DN que le capteur et égale à 12 diamètres doit être prévue en amont. De même, si le capteur doit être installé derrière deux courbes 90°, derrière un détendeur ou une vanne à passage réduit, une longueur de conduite rectiligne du même DN que le Gilflo et égale à 12 diamètres doit être prévu.

- La tuyauterie en amont et en aval doit être lisse, de préférence sans soudure.
- Le Gilflo ILVA doit être bien centré dans la conduite.
- Le capteur devra normalement être installé en position horizontale. Le montage en vertical (sens de circulation vers le bas) est admis, mais devra être spécifié à la commande.
- En cas d'utilisation sur la vapeur, il y a lieu de suivre les principes habituels d'une bonne installation vapeur, à savoir:
 - bon drainage de la conduite / purgeurs appropriés.
 - bon alignement et fixation de la tuyauterie / accessoires.
 - Pour les changements de diamètres, utiliser des réductions excentrées.

Aucune pièce du Gilflo ILVA ne nécessite de maintenance. Un contrôle visuel avec confirmation que la dimension orifice/cône tombe dans la tolérance, est possible. L'entretien de routine est décrit dans les notices techniques livrées avec le matériel

Dimensionnement du capteur Gilflo ILVA

Afin de déterminer le débit du Gilflo, il faut calculer le débit équivalent d'eau (QE) en se basant sur le débit réel estimé

Etape 1. : Déterminer QE en l/min en utilisant le tableau n°1.

i abieau i		
	Unités massiques	Unités volumiques
Liquides	$QE = \frac{M}{\sqrt{SG}}$	$QE = QL\sqrt{SG}$
Gaz et vapeur (conditions régime)	$QE = M\sqrt{\frac{1000}{DF}}$	$QE = QF\sqrt{\frac{DF}{1000}}$
Gaz (conditions standard)	$QE = \frac{M}{\sqrt{\frac{Ds}{1000} \times \frac{Pf}{Ps} \times \frac{Ts}{Tf}}} Q$	$QE = QS\sqrt{\frac{DS}{1000} \times \frac{PS}{PF} \times \frac{TF}{TS}}$

avec:

Q_E: Débit équivalent d'eau (I/min)

M : Débit massique (kg/min) Q_L: Débit liquide maxi (I/min)

Qs : Débit gaz maxi sous conditions standard (I/min) QF: Débit gaz maxi sous conditions régime (I/min)

SG: Densité

Ds: Masse volumique du gaz sous conditions standard (kg/m³) D_F: Masse volumique du gaz sous conditions régime (kg/m³)

 P_S : Pression standard = 1,013 bar abs = 1,033 kg/cm² abs

PF: Pression de fonctionnement (unité idem Ps)

Ts : 273 K

 T_F : Température de fonctionnement (K) - (°C + 273 = K)

Etape 2: En utilisant la valeur QE sélectionner le DN du Gilflo ILVA dans le tableau 2. En pratique, le DN est souvent égal au DN de la conduite.

Exemple

sélectionner un Gilflo ILVA pour mesure de 500 Nm³ /h d'air comprimé à 7 bar et 20°C.

Nota: conditions normales = 1,013 bar à 0°C, ce qui donne une densité normale de 1,29 kg/m3.

Calculer Q_E de la formule :
$$QE = Qs \sqrt{\frac{Ds}{1000}} \times \frac{Ps}{Pr} \times \frac{Tr}{Ts}$$

$$Q_{E} = (500x16,667)x\sqrt{\frac{1,29}{1000}x\frac{1,013}{8,013}x\frac{293}{273}}$$

Q_E = 110 l/min

Un Gilflo ILVA DN50 suffit pour cette application.

Nota: 1m³/h = 16,667 l/min

Tableau 2

DN	Q _e max (I/min)	Q _e min (I/min)	∆P max (mbar)
50	149	1	498
80	585	6	498
100	1200	12	498
150	2900	29	498
200	5700	57	498

Dimensionnement pour vapeur saturée

Le tableau ci-dessous donne les débits maxi à la vapeur saturée pour différentes pressions. Nota: les débits sont calculés pour une perte de charge à travers le Gilflo ILVA de 500 mbar.

Tableau 3

Iabica	iu J											
			Pression (bar eff.)									
DN		1	3	5	7	10	12	15	20	25	30	40
50	Débit max	307	427	517	594	693	752	832	952	1060	1160	1341
	Débit mini	3	4	5	6	7	8	8	10	11	12	13
80	Débit max	1206	16375	2032	2332	2721	2951	3268	3740	4163	4554	5265
	Débit mini	12	17	20	23	27	30	32	37	42	46	53
400	Débit max	2475	3435	4167	4784	5581	6054	6703	7671	8540	9341	10800
100	Débit mini	25	34	42	48	56	61	67	77	85	93	108
150	Débit max	5981	8301	10071	11562	13487	14631	16119	18538	20639	22573	26101
150	Débit mini	60	83	101	116	135	146	162	185	206	226	261
200	Débit max	11756	16317	19796	22726	26509	28757	31840	36437	40566	44368	51301
200	débit mini	118	163	198	227	265	288	318	364	406	444	513

Fiche Technique GILFLO-ILVA

TI-P337-05 / EMM-BEf-16 - 3 / 3 -