TI-P133-47 CMGT Issue 2

spirax Sarco M45 ISO

Ball Valve for Control of Fluids Sizing Sheet

Description

The M45 ISO ball valve is ideal for control applications. Both ball and seat are manufactured in chrome plated metal which ensures a long life, even with applications that constantly modulate the flow of the fluid. The valve is actuated by a double or single acting pneumatic actuator. The actuator is regulated by an electropneumatic positioner that receives a 4 - 20 mA signal from the process.

Advantages:

- Inherent equal percentage flow characteristic with high rangeability (32:1).
- Suitable for fluids that contain solids in suspension.
- Capacity is much higher than a same size globe valve.
- Less maintenance than spindle regulating valves.
- Small, compact and easily maintained.

Sizing

- 1. Determine the required C_v for the ball valve using the appropriate equation detailed below. With the first approximation for this calculation it is suggested to use a factor FL = 0.68, that corresponds to an opening of the valve of 72°.
- 2. Calculate the diameter of the pipe for maximum flow within the limits of velocity and pressure drop for the fluid.
- 3. With the C_v and pipe diameter, use the table on page 4 starting with the column that corresponds to the rotation of 72°, that gives FL = 0.68.
- 4. In this column, choose the combination of ball valve diameter and pipe diameter that gives a Cv result the same or superior to the one calculated in step 1.
- 5. It is recommended not to use a ball valve with a diameter less than half the pipe diameter, because of excessive tension that can produce vibrations.

Simplified equations for sizing (K, values = C, x 0.86)

For liquids									
Where:	Sub-critical flow	Critical flow							
$\Delta Pm = Maximum \Delta P \text{ for sizing,}$ $When P2 > Pv use \Delta Pm = F_{L}^{2}(P_{1} - P_{v})$	When: $\Delta P < \Delta P m$	When: $\Delta P \ge \Delta Pm$							
When $P_2 > P_v$ use $\Delta Pm = P_1 - \left[0.96 - 0.28 \sqrt{\frac{P_v}{P_c}} \right] P_v$									
C _v = Flow coeffecient of the valve									
F _L = Pressure recovery factor	Volumetric flowrate	Volumetric flowrate							
pr = Density at inlet temperature (water = 1.0 at STP)	$C_{V} = 1.16 \mathring{V} \sqrt{\frac{pr}{AP}}$	$C_{V} = \frac{1.16 \mathring{V}}{F_{I}} \sqrt{\frac{pr}{\Delta P m}}$							
P ₁ = Upstream pressure (bar a)	$C_V = 1.10 \text{ V} \sqrt{\Delta P}$	$C_{V} = \frac{1}{F_{L}} \sqrt{\Delta P m}$							
P ₂ = Downstream presure (bar a)									
P _v = Vapour pressure of the liquid at inlet temperature (bar a)									
P _c = Thermodynamic critical pressure (bar a)	Mass flowrate	Mass flowrate							
∛ = Flowrate in m³/h	m	m							
m = Flowrate in in kg/h	$C_{v} = \frac{m}{865\sqrt{\Delta Ppr}}$	$C_{V} = \frac{m}{865 F_{L} \sqrt{pr \Delta P m}}$							

Simplified equations for sizing $(K_v \text{ values} = C_v \times 0.86)$

For steam and gases								
Where:	Sub-critical flow	Critical flow						
C_v = Flow coeffecient of the valve	When:	When:						
F _L = Pressure recovery factor		$\Delta P > 0.5 F_L^2 P_1$						
pr = Specific density of gas (air = 1)	$\Delta P < 0.5 F_L^2 P_1$							
P ₁ = Upstream pressure (bar a)	For gases	For gases (volumetric flowrate)						
P ₂ = Downstream presure (bar a)	(volumetric flowrate)							
T = Inlet temperature in °K (°C + 273)	$C_{v} = \frac{\dot{v}}{295} \sqrt{\frac{prT}{P_{v}^{2} - P_{o}^{2}}}$	$C_v = \frac{\dot{V}}{257} \frac{\sqrt{prT}}{F.P.}$						
ỷ = Flowrate of gas in Nm³/h (at 15°C and 1 bar a)	³ √ - 295√P ₁ ² - P ₂ ²	O _V = 257 F _L P ₁						
ṁ = Flowrate of gas in in kg/h								
T _{so} = Superheating of steam in °C (Temperature of superheated steam - Temperature of saturated steam)	For gases (mass flowrate)	For gases (mass flowrate) $C_{v} = \frac{\mathring{m}\sqrt{T}}{311F_{L}P_{1}\sqrt{pr}}$ For saturated steam $C_{v} = \frac{\mathring{m}_{s}}{11.95F_{L}P_{1}}$						
ṁ _s = Flowrate of steam in kg/h	$C_{V} = \frac{\dot{m}\sqrt{T}}{360\sqrt{(P_{1}^{2} - P_{2}^{2})pr}}$							
Note: These equations are only a simplified version of the original sizing equations of the ISA and IEC regulations. The results are sufficiently close for practical use. There could be a maximum error of 8% in the transition of non-choked flowrate to choked flowrate.	For saturated steam $C_{V} = \frac{\dot{m}_{S}}{13.81 \sqrt{P_{1}^{2} - P_{2}^{2}}}$							
	For superheated steam	For superheated steam						
	$C_{v} = \frac{\dot{m}_{s} (1 + 0.00126 T_{so})}{13.81 \sqrt{P_{1}^{2} - P_{2}^{2}}}$	$C_{V} = \frac{\dot{m}_{s} (1 + 0.00126 T_{so})}{11.95 F_{L} P_{1}}$						

Cv values (Kv values = Cv x 0.86)

Valve size	Pipe	Rotation										
	size	0°	9°	18°	27°	36°	45°	54°	63°	72°	81°	90°
DN25	25 mm	0.00	0.00	0.96	1.61	2.56	3.88	6.51	9.61	15.50	24.49	31.00
	32 mm	0.00	0.00	0.96	1.61	2.56	3.87	6.48	9.50	15.06	22.85	27.86
	40 mm	0.00	0.00	0.96	1.61	2.56	3.87	6.45	9.42	14.73	21.75	25.92
	50 mm	0.00	0.00	0.96	1.61	2.55	3.86	6.41	9.29	14.24	20.27	23.52
DN40	40 mm	0.00	0.00	2.94	4.93	7.82	11.85	19.91	29.39	47.40	74.89	94.80
	50 mm	0.00	0.00	2.94	4.93	7.81	11.81	19.74	28.86	45.28	67.26	80.57
	65 mm	0.00	0.00	2.94	4.92	7.80	11.78	19.57	28.33	43.30	61.23	70.77
	80 mm	0.00	0.00	2.94	4.92	7.79	11.74	19.38	27.77	41.39	56.16	63.24
DN50	50 mm	0.00	0.00	3.41	5.72	9.08	13.75	23.10	34.10	55.00	86.90	110.00
	65 mm	0.00	0.00	3.41	5.72	9.08	13.74	23.05	33.94	54.33	84.33	104.92
	80 mm	0.00	0.00	3.41	5.72	9.07	13.71	22.93	33.57	52.85	79.08	95.30
	100 mm	0.00	0.00	3.41	5.72	9.06	13.69	22.80	33.15	51.26	74.04	86.83
DN65	65 mm	0.00	0.00	7.15	11.99	19.02	28.81	48.41	71.46	115.25	182.10	230.50
	80 mm	0.00	0.00	7.15	11.99	19.00	28.74	48.09	70.45	111.15	167.10	202.12
	100 mm	0.00	0.00	7.15	11.97	18.96	28.60	47.44	68.43	103.70	144.56	165.48
	150 mm	0.00	0.00	7.14	11.96	18.91	28.44	46.71	66.31	96.71	127.22	140.79
DN80	80 mm	0.00	0.00	8.99	15.08	23.93	36.25	60.90	89.90	145.00	229.10	290.00
	100 mm	0.00	0.00	8.99	15.07	23.91	36.17	60.53	88.71	140.16	211.30	256.20
	150 mm	0.00	0.00	8.99	15.06	23.86	36.00	59.74	86.30	131.20	183.85	211.18
	200 mm	0.00	0.00	8.98	15.06	23.84	35.93	59.40	85.27	127.65	174.44	197.26
DN100	100 mm	0.00	0.00	17.36	29.12	46.20	70.00	117.60	173.60	280.00	442.40	560.00
	150 mm	0.00	0.00	17.35	29.10	46.10	69.66	116.00	168.58	260.27	374.87	438.72
	200 mm	0.00	0.00	17.35	29.08	46.03	69.40	114.81	164.97	247.56	339.58	384.87
	250 mm	0.00	0.00	17.35	29.06	45.98	69.24	114.10	162.89	240.69	322.47	360.47
DN150	150 mm	0.00	0.00	23.25	39.00	61.88	93.75	157.50	232.50	375.00	592.50	750.00
	200 mm	0.00	0.00	23.25	38.99	61.85	93.66	157.07	231.12	369.29	570.71	707.20
	250 mm	0.00	0.00	23.25	38.99	61.82	93.55	156.53	229.43	362.50	546.56	662.73
	300 mm	0.00	0.00	23.25	38.98	61.80	93.47	156.18	228.32	358.16	532.04	637.31
										,		
FL		-	-	0.96	0.94	0.92	0.88	0.82	0.75	0.68	0.62	0.50