spirax /sarco

TI-P481-01 CTLS Issue 3

Spirax EasiHeat [™] HTG (Condensate Control) EN Heating System Compact Heat Transfer Solution

Heating system

Our Spirax EasiHeat™ HTG incorporating SIMS technology is a complete, compact and ready-to-use steam to water heat transfer solution that delivers superior energy efficient performance. For applications with stable load conditions such as closed circuit heating applications.

Spirax EasiHeat™ HTG can help you lower costs, tackle waste and mitigate your environmental impact by reducing your CO₂ emissions and carbon footprint, making a positive change towards a more sustainable future.

Principal features and benefits:

- Compact heat transfer solution incorporating SIMS technology.
- Energy monitoring, CO, emission, Communications, Remote monitoring and SMS or E-mail of system alarms.
- Produces hot water for heating and process.
- Designed for sub-cooling condensate to provide high efficiency.
- Maintains a stable temperature.
- Guaranteed performance.
- Fully assembled and tested ready to install.
- Options to suit all applications.

Heat exchanger

One of the components that guarantees system performance is the heat exchanger, which is precisely engineered to match the specific duty requirements.

With a high efficiency and low volume to pressure ratio. The plate and frame heat exchanger ensures reduced inspection requirements whilst being fully maintainable and expandable.

Control panel

The Spirax EasiHeat™ HTG now features our new innovative control system incorporating SIMS technology, delivering increased monitoring and communications.

A colour touch screen provides ease of use and clear visual access to all system parameters and access to energy data.

Metering

The TVA flowmeter has been specifically designed for large turndown on steam applications and is a key component of the Spirax EasiHeat™ HTG guaranteeing accurate measurement of energy usage.

Condensate control

One of the components that guarantees system performance is the correctly selected control valve with either electric or pneumatic actuation, and ensures all of the useful energy in the steam is used within the unit, there's less waste than other available alternatives which, in turn, reduces both fuel demand and your CO_2 emissions.

Materials

Steam and condensate pipework	Carbon steel
Steam control valve	Cast iron
Secondary pipework	Carbon steel

Pressure and temperature limits

Pipework design condition	PN16		
Maximum saturated steam supply pressure to heat exchanger	4 bar a		
Maximum secondary pressure	10 bar a		
Maximum secondary temperature	105 °C		
Maximum gasket temperature	180 °C		

Pipework

All pipework is correctly sized for the application and is fabricated using modern welding techniques, approved welders and weld procedures. Flanged products are used for reliability and easy maintenance.

Electrics and pneumatics

All control equipment is pre-wired and piped ready for connection to the air supply and power source.

Electrical supply Actuators	Power supply	110-240 Vac/50-60 Hz
	Supply fuse	5A (T)
	Electric	24 Vac/50-60Hz
	Pneumatic	4 to 6 bar g

Support frame

The whole system is delivered pre-assembled on a compact frame and baseplate, option of fitted wheels for ease of moving the unit into position, alternatively with a fork lift truck.

Dimensions (approximate) in mm

Heat Io	Heat load (kW) Type Valve Maximum dimensions actuation				Piping connections DN				
Min.	Max.			H L W		Steam	Water	Condensate	
50	550	EHHCC1	EL or PN	1321	1 281	684	DN50	DN50	DN15
550	1500	EHHCC2	EL or PN	1414	1420	834	DN100	DN100	DN20 or DN25
1500	2500	EHHCC3	EL or PN	1414	1706	834	DN100	DN100	DN20 or DN25

Notes:

- 1. The height of the system will increase by 25 mm if the wheels are fitted.
- 2. The heat load has been based on a steam inlet pressure of 2 bar g and 0 bar backpressure.

Spirax EasiHeat™ HTG nomenclature

	Building heating unit	EHHCC = Spirax EasiHeat™ HTG condensate control	ЕННСС					
		1 = DN15						
	Control valve size	2 = DN20	2					
Compulsory selection		3 = DN25						
	Pressure vessel code	P = PED	Р					
	Actuation	EL4 = Electric	F1.4					
	Actuation	PN = Pneumatic	- EL4					
	Llink limit	HL = Integrated high limit	IHL					
	High limit	IHL = Independent high limit	INL					
	High limit actuation	B = Battery back-up	В					
	(EL only)	C = Super capacitor	- В					
Mechanical options		V1 = Ball valve						
	Isolation	V2 = BSA	V2					
		V3 = DBB3	_					
	Gasket material	G1 = EPDMPC	G1					
	Fortuna	W = Wheels	100					
	Extras	S = EN 12828 safety option	- w					
	Control panel	T2 = SIMS technology touch screen	T2					
	Energy monitoring	E = With energy monitoring	E					
Panel options		R1 = Level 1 – SMS and E-mail						
	Remote access	R2 = Level 2 - Full web access	R2					
		R3 = Level 3 – SMS + Remote	_					
		C1 = Modbus RTU						
		C2 = BACnet MS/TP						
		C3 = Modbus TCP/IP	_					
Communications		C4 = DeviceNet						
		C5 = CANopen						
		C6 = BACnet IP						

Spirax EasiHeat™ HTG nomenclature example:

		ЕННСС	2	Р	EL4	-	IHL	В	V2	G1	w	_	T2	E	R2	C2
--	--	-------	---	---	-----	---	-----	---	----	----	---	---	----	---	----	----

Typical specification

The heating system shall be a Spirax EasiHeat™ compact heat transfer system complete with PLC functionality and SIMS technology to provide energy monitoring and remote access. The system will be pre-assembled and mounted on a compact frame with either pneumatic or electric control option.

In order to meet EU standards for Temperature Control Devices and Temperature Limiters For Heat Generating Systems, the selection of Independent High Limit (IHL) control is a compulsory selection for packages installed within the EU.

How to order

All systems are designed for the required heat load with controls to suit the application. The best way of ensuring that we have all the necessary information for quotation and manufacture is to complete our enquiry data sheet. Copies can be supplied on request and special requirements should be detailed.