

TI-P134-04 CMGT Issue 15

DCV4 Disc Check Valve

Description

The DCV4 stainless steel disc check valve is of the wafer pattern designed to be sandwiched between ASME flanges. It is suitable for use on a wide range of fluids for applications in process lines, hot water systems, steam and condensate systems etc.

Face-to-face dimensions conform to EN 558 part 2, series 52.

As standard it will be supplied with a metal-to-metal seat for use on steam applications. Where it will be used on oil, air, gas and water applications, alternative seat material is available - see 'Optional extras'.

Optional extras

High temperature springs for temperatures up to 400 °C.

Viton soft seats for oils, air and gas applications.

EPM soft seats for water applications.

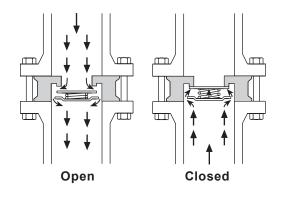
Standards

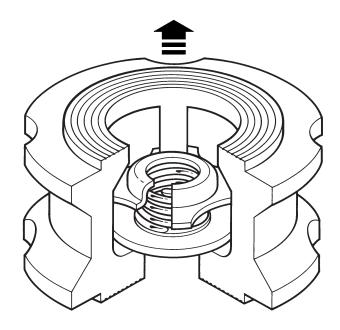
This product fully complies with the requirements of the European Pressure Equipment Directive 2014/68/EU.

Standard shut-off

Standard valves conform to EN 12266-1 rate E. Valves conforming to EN 12266-1 rate D are available on request. Soft seated versions meet EN 12266-1 rate A, providing a differential pressure exists.

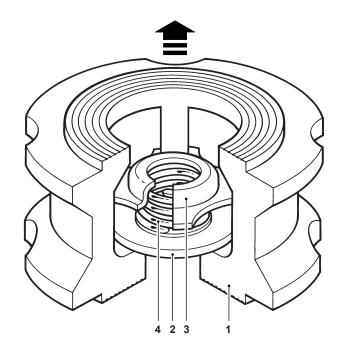
Certification

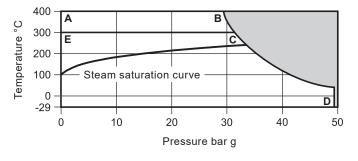

This product is available with certification to EN 10204 3.1. **Note:** All certification/inspection requirements must be stated at the time of order placement.


Sizes and pipe connections

DN15, DN20, DN25, DN40, DN50, DN80 and DN100 Suitable for installation between ASME 150 or ASME 300 flanges.

Operation


Disc check valves are opened by the pressure of the fluid and closed by the spring as soon as the flow ceases and before the reverse flow occurs.

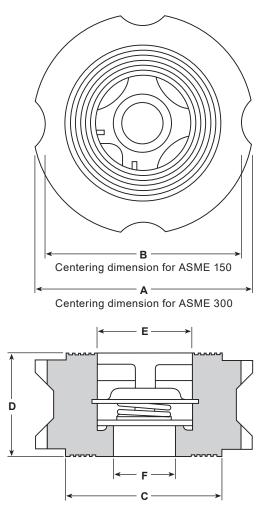


Materials

No.	Part	Material	
1	Body	Austenitic stainless steel	ASTM A351 CF3M
2	Disc	Austenitic stainless steel	ASTM A276 316
3	Spring retainer	Austenitic stainless steel	BS 1449 316 S11
	Standard spring	Austenitic stainless steel	BS 2056 316 S42
4	High temperature spring	Nickel alloy	Nimonic 90

Pressure/temperature limits

The product **must not** be used in this region.


A-B-D High temperature spring and without spring.

E-C-D Standard spring.

Please note: The figures displayed are only relevant when a metal-to-metal seat is used. If Viton or EPDM seats are used the product is restricted to the limits of the seat material chosen.

Body	design conditions for saturated steam s	service	ASME 300		
PMA	Maximum allowable pressure		49 bar g @ 37 °C		
ТМА	Maximum allowable temperature		400 °C @ 29 bar g		
Minim	um allowable temperature		-29 °C		
РМО	Maximum operating pressure for satu	irated steam service	34 bar g @ 243 °C		
	Maximum operating temperature	Standard spring	300 °C @ 31.5 bar (
тмо		High temperature spring	400 °C @ 29 bar g		
		Without spring	400 °C @ 29 bar g		
	um operating temperature For lower operating temperatures cons	sult Spirax Sarco	-29 °C		
Temperature limits		Viton seat	-25 °C to +205 °C		
		EPDM seat	-40 °C to +120 °C		
Produ	ct is safe for use under full vacuum cor	nditions			
Desig	ned for a maximum cold hydraulic test	pressure of	76 bar g		

Dimensions/weights (approximate) in mm and kg

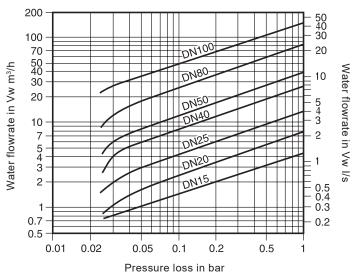
	ASME 300	ASME 150					
Size	А	В	С	D	E	F	Weight
DN15	54	47	38	25	22.35	15	0.24
DN20	67	57	46	31	27.35	20	0.41
DN25	73	67	54	35	33.15	25	0.54
DN40	95	86	76	45	49.15	40	1.15
DN50	111	105	95	56	59.15	50	1.84
DN80	149	136	130	71	90.15	80	3.69
DN100	181	174	160	80	111.15	100	5.70

Kv values

DN	15	20	25	40	50	80	100
Kv	4.4	7.5	12	26	39	84	150

For conversion: Cv (UK) = Kv x 0.963 Cv (US) = Kv x 1.156

Opening pressures in mbar


Differential pressures with zero flow for standard and high temperature springs.

→ Flow direction								
DN	15	20	25	40	50	80	100	
↑	25	25	25	28	29	31	33	
→	22.5	22.5	22.5	24	24.5	25.5	26.5	
Ŷ	20	20	20	20	20	20	20	

Where lowest opening pressures are required, valves without springs can be installed in vertical pipes with bottom-to-top flow.

Without	spring						
1	2.5	2.5	2.5	4.0	4.5	5.5	6.5

Pressure loss diagram

Pressure loss diagram with open valve at 20 °C. The values indicated are applicable to spring loaded valves with horizontal flow. With vertical flow, insignificant deviations occur only within the range of partial opening. The curves given in the chart are valid for water at 20 °C. To determine the pressure for other fluids the equivalent water volume flowrate must be calculated and used in the graph.

$$\dot{V}w = \sqrt{\frac{\rho}{1000}} \times \dot{V}$$

 $\begin{array}{lll} \mbox{Where:} & \mbox{\dot Vw} &= \mbox{Equivalent water volume flow in l/s or m^3/h} \\ \rho &= \mbox{Density of fluid kg/m^3} \\ \mbox{\dot V} &= \mbox{Volume of fluid l/s or m^3/h} \\ \end{array}$

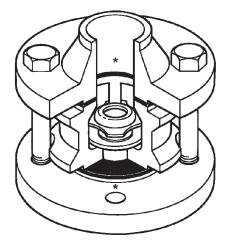
Pressure loss information for steam, compressed air and gases is available from Spirax Sarco.

How to order

Example: 1 off Spirax Sarco DN40, DCV4 stainless steel disc check valve for fitting between ASME 300 flanges.

Safety information, installation and maintenance

For full details see the Installation and Maintenance Instructions supplied with the product.


DCV4 disc check valves must be fitted in accordance with the direction of flow arrow indicating correct fluid flow direction. When fitted with a spring they can be installed in any plane. When supplied without a spring they must be fitted in a vertical flow line with the flow from bottom-to-top.

* Note: Flanges, bolts (or studs), nuts and joint gaskets are to be provided by the installer. Disc check valves are non-maintainable (no spares are available). Disc check valves are not suitable for use where heavily pulsating flow exists, such as close to a compressor.

Various options are denoted by a marking on the valve body:

'N' - High temperature spring - Standard metal disc 'w' - Without spring - Standard metal disc 'V' - Viton soft faced disc - Standard spring 'E' - Standard spring - EPDM soft faced disc 'WV' - Without spring - Viton soft faced disc 'WE' - Without spring - EPDM soft faced disc 'T' - Valves tested to EN 12266-1 Rate D

No identification indicates a standard spring with a metal disc.

Disposal

If a product which contains a Viton component has been subjected to a temperature approaching 315 °C or higher, then it may have decomposed and formed hydrofluoric acid. Avoid skin contact and inhalation of any fumes as the acid will cause deep skin burns and damage to the respiratory system. Viton must be disposed of in a recognised manner as stated in the Installation and Maintenance Instructions. No other ecological hazard is anticipated with the disposal of this product providing due care is taken.