

Wasserbadkühler

Systemübersicht

Bescheibung

Ein Wasserbadkühler ist ein direkter Dampfkühler. Die Dampfkühlung durch einen Wasserbadkühler erfolgt dadurch, dass der überhitzte Dampf durch ein Wasserbad geleitet wird. Hierdurch verdampft der überhitzte Dampf einen Teil des im Wasserbadkühler enthaltenen Kühlwassers und gibt somit einen Teil seiner Wärme ab. Hierdurch tritt der Kühleffekt ein. Der nun so aus dem Wasserbadkühler entstehende und dann austretende Dampf wird bei Sattdampftemperatur erzeugt und erreicht einen Dampfgehalt von über 98%. Es empfiehlt sich nach dem Dampfabzug des Wasserbadkühlers einen Dampftrockner mit entsprechender Entwässerung vorzusehen.

Ein Wasserbadkühlersystem besteht in erster Linie aus einem geeignet dimensionierten Behälter, dem eigentlichen Wasserbadkühler, der das Kühlmedium enthält und mit weiteren für die Funktion notwendige Armaturen und Regelkreisen ausgerüstet ist.

Wasserbadkühler haben mehrere Vorteile, insbesondere jedoch dass sie echten Sattdampf mit einem Dampfgehalt von bis zu ca. 98% erzeugen und ein sehr großes Massenstellverhältnis haben, also einen fast unbegrenzt großen Arbeitsbereich haben. Sie reagieren schnell auf Änderungen in der Abnahme und können bei entsprechender Auslegung auch ausgleichend wirken. Sie sind einfach und zuverlässig.

Typischerweise kommen Wasserbadkühler zum Einsatz, wo keine Restüberhitzung zulässig ist und/oder wo ein sehr großes Massen-Stellverhältnis abgedeckt werden muss. Ein Dampfkühlsystem mit Wasserbadkühler hat eine hohe Sicherheit gegen Temperaturüberschreitung.

Die Einsatzgrenzen werden in der Regel nach oben durch die Größe und die Kosten des Behälters gegeben. Für kleine Mengen zu kühlenden Dampf stellen sie oft das einzige verwendbare System dar.

Wasserbadkühler TIS WBKü D

Eigenschaften

Bauform	stehender oder liegender Druckbehälter
Arbeitsbereich (Massen-	0 bis 100%
stellverhältnis)	
Dampferzeugung	bei Sattdampftemperatur
Dampfgehalt	über 98%
Restüberhitzung	keine
Temperaturstabilität	sehr gut
Temperaturüberschreitung	geringes Risiko
Auslaufstrecke	nicht erforderlich
Speisewasserdruck	minimal 2 bar über dem Dampfdruck
Speisewasserqualität	Kondensat; geringe Leitfähigkeit
	< 20 μS/cm
Speisewassertemperatur	85°C oder mehr
Sensorik	direkt nach Behälterausgang
Reaktionsgeschwindigkeit	schnell
auf Änderungen	
Aufstellung	Unterbringung Behälter beachten
Besonderheiten	Wirkt wie ein Dampfspeicher bei ent-
	sprechender Auslegung

Einsatzgrenzen

maximaler Druck	20 bar ü
maximale Temperatur	230 °C
maximale Dampfmenge	15 to/h
Arbeitsbereich Dampfmenge	0100 %

Möglichkeiten der Kühlung:

Kühlung auf Sattdampfwerte	sehr gut
Kühlung auf überhitzte Betriebsbedigungen	nicht möglich

Auslegungsdaten

Dampfdaten für den Betrieb

Dampfüberdruck Eintritt	bar ü
Dampftemperatur Eintritt	°C
Dampftemperatur Austritt	°C
Dampfdurchsatz minimal	kg/h
Dampfdurchsatz normal	kg/h
Dampfdurchsatz maximal	kg/h

Kühlwasserdaten für den Betrieb

Wassertemperatur Eintritt	°C
Wasserüberdruck Eintritt	bar ü
Wasser Leitfähigkeit	μS/cm

Auslegungsdaten

Auslegungsdampfdruck	bar ü
Auslegungsdruck	bar ü
Rohrleitung Dampf [DN]	

Hinweis: Der sorgfältig ermittelte Arbeitsbereich (Dampfdurchsatz minimal zu maximal) ist wichtig für eine spätere zufriedenstellende Funktion der Kühlung.

Auslegungskriterien für Dampfkühler (vereinfacht)

Bitte beachten Sie, dass diese hier vereinfachten Kriterien für die Systemauswahl sind. Um das geeignete Dampfkühlsystem auswählen zu können, ist die Kenntnis an die Anforderungen der Dampfbedingungen unbedingt notwendig. Bei Rückfragen sprechen Sie uns bitte an. Hier einige Krieterien:

1. Arbeitsbereich (Dampfdurchsatz minimal/maximal)

10100%	Einspritzkühler oder Wasserbadkühler
0100%	Wasserbadkühler

2. Dampf nach der Kühlung – Wie hoch darf die Restüberhitzung nach der Kühlung sein ?

2K oder weniger	Wasserbadkühler
5K bis 15K	Einspritzkühler oder Wasserbadkühler

Kühlwasserdruck (Druck über Dampfdruck im Wasserbadkühler/an der Einspritzdüse)

Mehr als 5 bar	Einspritzkühler oder Wasserbadkühler
Weniger als 5 bar	Wasserbadkühler
4. Dampfmenge	
weniger als 2000 kg/h	Wasserbadkühler
2000 kg/h 15 to/h	Wasserbadkühler oder Einspritzkühler
mehr als 15 to/h	Einspritzkühler