

TR

Tanques de Reevaporação de Condensado

Descrição do Produto

Os tanques de reevaporação Spirax Sarco são a melhor alternativa quando se deseja aproveitar a energia do condensado em instalações de vapor, antes de retorná-lo à caldeira ou simplesmente descarregá-lo para a atmosfera. O manômetro e a válvula de segurança garantem a segurança operacional do equipamento.

Condições de Trabalho

Condições máximas de operação:

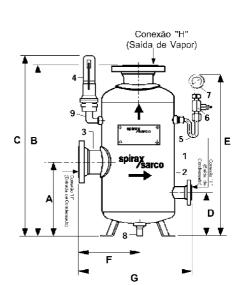
Pressão máxima de operação (PMO): 10 barg Temperatura máxima de operação (TMO): 184°C

Condições máximas do corpo:

Pressão máxima do corpo : 10 barg
Temperatura máxima do corpo : 184 °C
Teste hidrostático : 19,9 barg

Conexões

	_	Entrada de ondensado		ída de Vapor eevaporação H	Saída de Condensado I	
Modelo	Ø Conexão		Ø	Conexão	Ø	Conexão
DN150	2½"	-	2½"	-	1½"	_
DN200	4"	Flangeada	4"	Flangeada	1½"	Flangeada
DN300	5"	(ANSI-B - 16.5)	5"	(ANSI-B - 16.5)	2"	(ANSI-B - 16.5)
DN380	6"		6"		2"	


^{*} Outras bitolas sob consulta

Dimensões (aproximadas em mm)

DN	Α	В	С	D	Е	F	G	Peso (Kg)
150	451	1097	1185	289	1100	168	332	32,0
200	459	1110	1275	294	1086	213	403	47,0
300	476	1152	1380	311	1102	282	535	74,0
380	532	1260	1460	330	1190	323	617	97,0

Composição

Item	Especificação	Material
1	Corpo	Aço Carbono
2	Flange saída de Condensado	Aço Carbono
3	Flange entrada do Condensado	Aço Carbono
4	Válvula de Segurança (SV 17)	FoFo
5	Tubo Sifão	Latão
6	Válvula de Pulsação (VP)	Latão
7	Manômetro (MVE)	Aço Inox
8	Bujão	Ferro Mal. Preto
9	Curva	Ferro Mal. Preto

Saída de vanor

Saída de

Condensado

Dimensionamento

A figura 1 mostra a porcentagem de vapor reevaporado formado a partir da pressão a montante do purgador e a

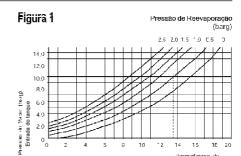
pressão de reevaporação do condensado. Multiplicando-se esta porcentagem encontrada pela vazão total de condensado

que chega ao tanque, obtém-se a quantidade total de vapor de reevaporação gerado.

Através da figura 2 encontra-se o modelo de tanque de reevaporação que deve ser utilizado de acordo com a vazão de condensado e a vazão de vapor de reeva-poração calculada anteriormente.

Exemplo:

Os purgadores de um sistema de aquecimento (pressão 10,5 barg) descarregam

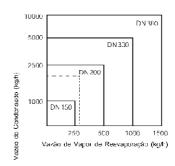

2.000 kg/h de condensado. Determinar o tamanho do tanque de reevaporação para o aproveitamento do vapor à pressão

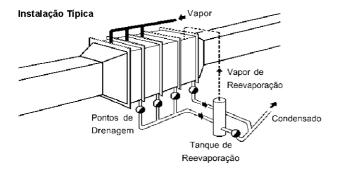
Solução:

Na figura 1 determina-se a porcentagem de reevaporação (13,5%), multiplica-se pela vazão de condensado (2.000 kg/h) e obtém-se a vazão de vapor de reevaporação (270 kg/h). Utilizado-se a figura 2, obtém-se o tanque DN 200.

Descarga Contínua de Caldeiras

Em caso de recuperação de condensado de descarga contínua de caldeiras, os sólidos contidos na água podem causar problemas. Para estes casos é aconselhável que se utilize um tanque de tamanho imediatamente superior ao dimensionado pela figura 2.




10 - 2 13 18

Percentagem de

Reevaporação (%)

Figura 2

