

spirax sarco

SV66H Válvula de Segurança Manual de Instalação e Manutenção

- 1. Termo de garantia
- 2. Informações gerais de segurança
- 3. Introdução
- 4. Terminologia
- 5. Armazenamento
- 6. Instalação
- 7. Teste de Campo
- 8. Manutenção e Testes
- 9. Resolução de Problemas

1. Termo de garantia

A Spirax Sarco garante, sujeita às condições descritas a seguir, reparar e substituir sem encargos, incluindo mão de obra, quaisquer componentes que falhem no prazo de 1 ano da entrega do produto para o cliente fim. Tal falha deve ter ocorrido em decorrência de defeito do material ou de fabricação, e não como resultado do produto não ter sido utilizado de acordo com as instruções deste manual.

Esta garantia não é aplicada aos produtos que necessitem de reparo ou substituição em decorrência de desgaste normal de uso do produto ou produtos que estão sujeitos a acidentes, uso indevido ou manutenção imprópria.

A única obrigação da Spirax Sarco com o Termo de Garantia é de reparar ou substituir qualquer produto que considerarmos defeituoso. A Spirax Sarco reserva os direitos de inspecionar o produto na instalação do cliente fim ou solicitar o retorno do produto com frete pré-pago pelo comprador.

A Spirax Sarco pode substituir por um novo equipamento ou aperfeiçoar quaisquer partes que forem julgadas defeituosas sem demais responsabilidades. Todos os reparos ou serviços executados pela Spirax Sarco, que não estiverem cobertos por este termo de garantia, serão cobrados de acordo com a tabela de preços da Spirax Sarco em vigor.

ESTE É O TERMO ÚNICO DE GARANTIA DA SPIRAX SARCO E SOMENTE POR MEIO DESTE A SPIRAX SARCO SE EXPRESSA E O COMPRADOR RENUNCIA A TODAS AS OUTRAS GARANTIAS, IMPLICADAS EM LEI, INCLUINDO QUALQUER GARANTIA DE MERCADO PARA UM PROPÓSITO PARTICULAR.

— 2. Informações gerais de segurança

Acesso

Garantir um acesso seguro e se necessário uma plataforma e/ou bancada antes de iniciar os trabalhos no produto e/ou instalação. Caso seja necessário providencie um dispositivo que possa elevar o produto adequadamente.

Iluminação

Assegure uma iluminação adequada, particularmente onde os serviços serão realizados e onde haja fiação elétrica.

Líquidos ou gases perigosos na tubulação

Verifique o que está ou esteve presente na tubulação, tais como: vapores, substâncias inflamáveis e perigosas à saúde, temperaturas elevadas.

Ambiente perigoso em torno do produto

Considere: áreas do risco de explosão falta de oxigênio (por exemplo, em tanques e poços), gases perigosos, temperaturas extremas, superfícies quentes, perigo de fogo (por exemplo, durante a soldagem), ruído excessivo, máquina em movimento.

O Sistema

Considere por exemplo: se o fechamento de válvulas de bloqueio ou a despressurização, colocará outra parte do sistema ou pessoa em risco. Quando da abertura e fechamento das válvulas de bloqueio, faça-o de maneira gradual para evitar choques no sistema.

Pressão do sistema

Assegure-se de que toda a pressão existente esteja isolada ou o sistema esteja despressurizado. Não suponha que o sistema esteja despressurizado, mesmo quando os manômetros indicarem pressão zero.

Temperatura

Aguarde a temperatura baixar após o bloqueio dos sistemas, para evitar o perigo de queimaduras.

Ferramentas e materiais de consumo

Antes de começar o trabalho assegure-se de que você tenha as ferramentas e/ou os materiais de consumo apropriados.

Equipamento de Proteção

Use sempre equipamentos de proteção individual necessários para a realização dos trabalhos.

Permissões para trabalho

Todo o trabalho deve ser realizado e/ou supervisionado por pessoa qualificada. Fixe avisos sempre que necessário.

Trabalhos elétricos

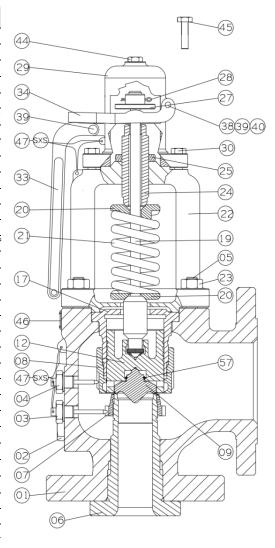
Antes de começar o trabalho estude o diagrama de fiação e as instruções da fiação e verifique todas as exigências especiais. Considere particularmente: tensão de fonte principal e fase, isolação local dos sistemas principais, exigências do fusível, aterramento, cabos especiais, entradas do cabo, seleção elétrica.

Comissionamento

Apósainstalação ou amanutenção assegure-se de que osistema esteja funcionando corretamente. Realize testes em todos os alarmes e dispositivos protetores.

Disposição

Os equipamentos e materiais devem ser armazenados em local próprio e de maneira segura. Ver item 5


Descarte do produto

O produto é reciclável. Nenhum dano ao meio ambiente está previsto com o descarte do produto, se realizado de maneira apropriada.

Informações Adicionais

Informações adicionais e ajuda estão disponíveis mundialmente em qualquer centro de serviço Spirax Sarco.

Nº	Parte
01	Corpo
02	Tampão do Dreno
03	Parafuso de Bloqueio Inferior
04	Parafuso de Bloqueio Superior
05	Prisioneiros
06	Bocal **
07	Anel de Regulagem Inferior
80	Anel de Regulagem Superior
09	Disco **
12	Suporte Disco
17	Guia
19	Haste
20	Apoio de Mola
21	Mola **
22	Castelo
23	Porcas
24	Parafuso de Regulagem
25	Porca de Bloqueio
27	Disco da Alavanca
28	Cupilha
29	Capuz
30	Parafuso
33	Alavanca
34	Garfo
38	Arruela
39	Pino
40	Cupilha
44	Parafuso Tampão
45	Trava p/ Teste GAG
46	Plaqueta de Identificação
47	Lacre
57	Anel de Retenção **

** Sobressalentes recomendados para 2 anos de operação

3. Introdução

As Válvulas de Segurança SV66H são construídas de acordo com o as exigências do código ASME Seção I. Possuem excelentes características de desempenho para trabalho com vapor, tanto em caldeiras como nos demais equipamentosde processo.

O correto armazenamento, manuseio, instalação e testes das válvulas, é garantia de desempenho compatível com as especificações do produto.

Este manual contém conceitos básicos sobre armazenamento, instalação, operação e manutenção das Válvulas de Segurança SV66H, mas não substitui os conhecimentos técnicos e experiência, necessários para a execução dos serviços de reparo e manutenção das válvulas. Para a identificação das peças da válvula, veja desenho na página 05.

4. Terminologia

4.1 Válvulas de Segurança

Dispositivo automático de alívio de pressão caracterizado por uma abertura instantânea (pop) uma vez atingida à pressão de abertura. Utilizadas em serviço com fluídos compressíveis (Gases e Vapores).

4.2 Válvulas de Alívio

Dispositivo automático de alívio de pressão caracterizado por uma abertura progressiva e proporcional ao aumento de pressão acima da pressão de abertura. Utilizadas em serviço com fluídos incompressíveis (Líquidos).

4.3 Válvulas de Segurança e Alívio

Dispositivo automático de alívio de pressão adequado para trabalhar como válvula de segurança, ou de alívio, dependendo aplicação desejada.

4.4 Pressão Máxima de Trabalho Admissível (PMTA)

É a pressão máxima de trabalho de um vaso, compatível com o código de projeto, a resistência dos materiais utilizados, as dimensões do equipamento e seus parâmetros operacionais.

4.5 Pressão de Operação

É a pressão a que está sujeito o vaso em condições normais de operação. Uma margem razoável deve ser estabelecida entre a pressão de operação e a de trabalho máxima admissível. Para uma operação segura, a pressão de operação deve ser pelo menos 7% menor que a PMTA, ou 0.34bar, o que for maior.

4.6 Pressão de Abertura(Set Pressure)

É a pressão manométrica na qual a válvula é ajustada para abrir.

4.7 Pressão de Ajuste à Frio

É a pressão na qual a válvula é ajustada para abrir em bancada de teste. Esta pressão inclui correções para as condições de serviço (contrapressão e/ou temperatura).

4.8 Pressão de Alívio

É a pressão na qual a válvula alivia a capacidade máxima, para qual foi dimensionada. É igual à pressão de abertura mais a sobrepressão.

4.9 Sobrepressão

É o incremento de pressão acima da pressão de abertura da válvula, que permitirá a máxima capacidade de descarga, normalmente expressa em porcentagem da pressão de abertura.

4.10 Acumulação

É o aumento de pressão acima da PMTA do vaso, durante a descarga do dispositivo de segurança, expressa em porcentagem daquela pressão.

A sobrepressão pode coincidir com a acumulação quando o dispositivo de segurança estiver ajustado para abrir na PMTA.

4.11 Pressão de Fechamento

É a pressão em que a Válvula de Segurança e ou Alívio fecha, retomando a sua a sua posição original, depois de restabelecida a normalidade operacional, e é igual à pressão de abertura menos o diferencial de alívio(Blowdown).

4.12 Diferencial de Alívio (Blowdown)

É a diferença entre a pressão de abertura e a de fechamento da válvula. Expressa normalmente em porcentagem da pressão de abertura.

4.13 Curso Máximo (Lift)

É o valor do deslocamento do disco da Válvula de Segurança e/ou Alívio durante a descarga da válvula, medido a partir da sua posição fechada.

4.14 Capacidade de Descarga

É a vazão de um determinado fluido que a válvula permite aliviar nas condições operacionais para a qual foi dimensionada.

4.15 Coeficiente de Descarga

É o quociente da capacidade real (medida em laboratório) dividida pela capacidade teórica.

4.16 Contrapressão

É a pressão existente na conexão de saída da Válvula de Segurança e ou Alívio, podendo ser:

4.16.1 Superimposta

4.16.1.2 Constante

Quando não há variação da pressão no lado da descarga da válvula em qualquer condição de operação, com a válvula fechada.

4.16.1.3 Variável

Quando existe variação da pressão no lado da descarga da válvula, antes da abertura.

4.16.2 Desenvolvida

É a pressão no sistema de descarga da válvula, decorrente do escoamento do fluído após sua abertura.

4.17 Simmer

Escape audível ou visível de fluido compressível, entre as superfícies de vedação que ocorre a um valor imediatamente abaixo da pressão de abertura e de capacidade não mensurável.

4.18 Batimento (Chattering)

Situação anormal caracterizada por aberturas e fechamentos em rápida sucessão podendo causar sérios danos à válvula.

5 Armazenamento e Manuseio —

- O armazenamento deverá ser feito sempre na embalagem original, com as válvulas na posição vertical em pé.
- Armazene as válvulas em ambiente coberto, limpo e seco. A proteção das conexões de entrada e saída impede a entrada de impurezas no interior das válvulas, removê-las somente quando da sua instalação.
- Ao movimentá-las, evite vibrações, choques e manuseios bruscos, mantendo-as sempre na posição vertical, com a entrada para baixo.
- · Nunca transporte ou movimente as válvulas utilizando a alavanca de testes.

6 Instalação

6.1 Requisitos Gerais

6.1.1 As válvulas devem ser instaladas conforme requisitos da **Figura 01** abaixo:

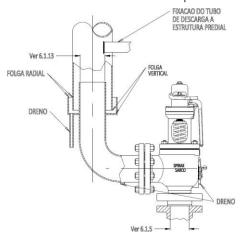


Figura 01

- 6.1.2 É recomendado que as válvulas sejam inspecionadas antes da sua instalação (Ver 8.6). Deve- se verificar a calibração e estanqueidade. Para isso, utilize bancada adequada para teste com ar comprimido ou gás inerte. Os ensaios deverão ser executados por profissionais qualificados, na presença de um inspetor de equipamentos.
- 6.1.3 Certifique-se de que o equipamento a ser protegido passou por um processo de purga para remoção de todos os detritos e partículas, tais como: resíduos de solda, pedaços de juntas ou quaisquer outros materiais sólidos. Alertamos que qualquer impureza que se alojar entre as superfícies de ve- dação ou mesmo passar entre elas em alta velocidade ocasionará sulcos e marcações que provocarão vazamentos das válvulas.
- 6.1.4 As Válvulas de Segurança devem sofrer manutenções periódicas, para garantia de um desempenho satisfatório. Para tanto é necessário instala-las em áreas de fácil acesso. Deve-se prever uma área para trabalho ao redor e acima das válvulas, para que se possa ter acesso aos anéis de regulagem e ao parafuso de regulagem. Se duas ou mais válvulas forem instaladas muito próximas, as saídas devem ficar paralelas de modo a oferecer proteção ao pessoal de manutenção e ao pessoal que trabalha nas proximidades das válvulas.
- 6.1.5 As Válvulas de Segurança devem ser instaladas na posição vertical em pé (+/- 1º), diretamente sobre o equipamento protegido em uma tubulação de diâmetro nominal igual ou maior que o diâmetro de entrada das válvulas, deve-se evitar cantos vivos nos trechos desta tubulação.
- **6.1.6** Nenhum tipo de válvula deve ser instalada entre a Válvula de Segurança e o equipamento protegido.
- 6.1.7 A perda de carga excessiva na tubulação de entrada ocasionará um ciclo de abertura e fechamento extremamente rápido da Válvula de Segurança (chattering) (4.18). Este fenômeno pode resultar em perda da capacidade de descarga da válvula, danificar suas superfícies de vedação e, em casos extremos, danificar também outros componentes da válvula.
- 6.1.8 A perda de carga, devido a fricção do fluxo na entrada da válvula, não deve exceder a 50% diferencial de alívio (blowdown) esperado da Válvula de Segurança.
- **6.1.9** Os cantos dos bocais de conexão das válvulas devem ser arredondados com raio superior a ¼ do diâmetro da abertura.
- **6.1.10** Para redução dos efeitos do fenômeno conhecido com "vibração sônica", as seguintes recomendações devem ser observadas:
 - 1. As Válvulas de Segurança devem ser instaladas a uma distância de pelo menos oito a dez diâmetros da tubulação a jusante de qualquer curva da linha de vapor. Essa distancia deve ser aumentada quando a válvula for instalada na seção horizontal da linha precedida por uma seção ascendente.

- 2 As Válvulas de Segurança devem ficar a uma distancia de oito a dez diâmetros da tubulação, a montante ou a jusante, de um Y convergente ou divergente.
- 3. As Válvulas de Segurança nunca devem ser instaladas, na linha de vapor, numa posição diretamente oposta a uma derivação da linha.
- 6.1.11 O excesso de vibração na l inha produz alterações na pressão de abertura da Válvula de Segurança e contribui também para o aumento de vazamentos da válvula. Devem-se estudar meios de eliminar esse problema antes de sua instalação.
- 6.1.12 Os efeitos da vibração e da força de reação resultantes da descarga da válvula, em todos os componentes da válvula e tubo de descarga, devem ser levados em consideração ao projetar o sistema.
 - O cálculo da força de reação durante a descarga da válvula é de responsabilidade do projetista do vaso e/ou tubulação. A Spirax Sarco poderá informar estes valores apenas como auxílio técnico, não assumindo nenhuma responsabilidade por sua aplicação.
- 6.1.13 A área de descarga da tubulação de saída das válvulas não deve ser menor que a área da conexão de saída da válvula. Quando mais de uma Válvula de Segurança for conectada a um tubo de saída comum, a área do tubo não deve ser menor à soma das áreas das conexões de conexões de saída das válvulas.
- **6.1.14** Nenhum tipo de válvula deverá ser instalada entre a conexão de saída da Válvula de Segurança e a atmosfera.
- 6.1.15 Todas as Válvulas de Segurança devem ter um tubo de descarga direcionado para fora das áreas de passagem ou plataformas. O tubo deve ter drenos por gravidade, próximos a Válvula de Segurança, nos locais que possa haver acúmulo de água ou condensado. Toda Válvula de Segurança tem um dreno por gravidade aberto no corpo, e esse dreno deve ser canalizado para uma área segura.
- 6.1.16 No caso da instalação de silenciador na descarga da Válvula de Segurança, a área do silenciador deverá ser suficiente para evitar que a contrapressão interfira na operação e capacidade de descarga normal da válvula O silenciador ou outros componentes necessários devem ser construídos de modo a não permitir a formação de depósitos de corrosão que causem restrições a passagem do vapor.
- 6.1.17 A tubulação de descarga deve ser instalada de maneira a não causar esforços indevidos na Válvula de Segurança. Estes esforços podem produzir distorções no corpo e vazamentos. Para evitá-los, as seguintes recomendações devem ser observadas:
 - 1.A tubulação de descarga não deve ser ancorada na válvula. O peso máximo sobre a saída da válvula não deve exceder o peso de um cotovelo de raio curto com flange, mais um tubo reto de 12" (305 mm) de comprimento compatíveis com a classe do flange de saída da válvula.

- 2 A folga entre o tubo de descarga e a chaminé deve ser suficiente para que eles não se toquem, devido a expansão térmica do tubo, da válvula e da chaminé.
 - Movimentos causados por vibração e forças reativas da válvula também devem ser levados em consideração no dimensionamento da folga entre o tubo de descarga e a chaminé.
- 6.1.18 A contrapressão desenvolvida (4.16.2) gerada pela conexão de descarga e ou silenciadores deve ser de no máximo 0.5 barg.
- 6.1.19 A Válvula de Segurança deve ser içada sempre na posição vertical em pé, podendo ser içada com um cabo preso em torno do castelo e pescoço de saída.

Em nenhuma hipótese a válvula deverá ser içada pela alavanca de teste.

- 6.1.20 As Válvulas de Segurança não pode sofrer choques nem cair durante sua instalação.
 - Caso isto aconteça, deverá ser inspecionada em bancada de testes para verificação da pressão de abertura e vedação.
- 6.1.21 Certifique-se de que as juntas e prisioneiros das conexões estejam em conformidade com as especificações da tubulação. Os prisioneiros e porcas devem ser lubrificados com lubrificante apropriado.
- 6.1.22 Ao instalar as válvulas, os prisioneiros do flange deverão ser encaixados com cuidado para evitarem-se distorções no corpo da válvula, desalinhamentos e vazamentos.
- 6.1.23 Com a válvula instalada na posição, rosqueie as porcas manualmente. Inicialmente com pequeno torque, aperte cada porca na seqüência recomendada em função do numero de prisioneiros (Tabela 01), em seguida aumente o torque obedecendo à mesma seqüência de aperto inicial, até o torque final requerido. O torque requerido varia conforme o material e dimensão dos prisioneiros e porcas, e tipo de junta utilizada. Consulte sua engenharia sobre os valores de torque a serem aplicados.

Nº de Prisioneiros	Seqüência de Aperto
4	1-3-2-4
6	1-4-2-5-3-6
8	1-5-3-7 —> 2-6-4-8
12	1-7-4-10 -> 2-8-5-11 -> 3-9-6-12
16	1-9-5-13 -> 3-11-7-15 -> 2-10-6-14>

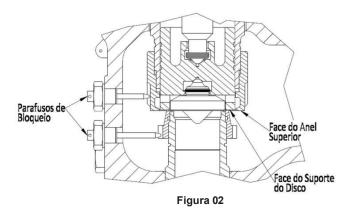
Tabela 01

- 6.1.24 Instale a tubulação de descarga utilizando os mesmos procedimentos adotados na instalação da válvula.
- **6.1.25** Antes de terminar a instalação, verifique visualmente se a alavanca de teste pode ser operada livremente.
- 6.1.26 Após a instalação inspecione a válvula verificando se todos os componentes de ajuste (parafusos de trava dos anéis de regulagem, capuz e etc.) encontram-se devidamente travados e lacrados conforme exigência do código ASME Seção I PG-73.2.9 e NR-13.

Válvulas de Segurança que operam sob as melhores condições possíveis (com intervalo operacional favorável, temperaturas ambientes relativamente estáveis e ausência de sujeira) proporcionam o máximo grau de segurança, estanqueidade e confiabilidade

7 Teste de Campo

7.1 Informações Gerais


- As Válvulas de Segurança SV66H são testadas com vapor na fábrica para verificação da pressão de abertura e estanqueidade das vedações. Toda válvula é ajustada para abrir na pressão especificada e fechar hermeticamente. No entanto, como as condições de serviço são diferentes das condições dos testes de fábrica e como a caldeira utilizada nos testes das válvulas tem capacidade inferior se comparadas com as capacidades das válvulas, ajustes na instalação real são necessários para garantir a ação adequada da válvula e as configurações dos anéis de ajuste e a atuação correta da válvula. (ASME Seção I PG- 73.5.2.1).
- É importatente notar que os ajustes dos anéis de regulagem efetuados pela Spirax Sarco são ajustes preliminares e não devem ser considerados como ajustes finais.
- As válvulas são ajustadas na fábrica com diferencial de alívio (blowdown) longo para evitar o batimento (chattering)(4.18) nas condições iniciais de partida.
- Durante o início da operação, as travas de teste (GAG) não deverão ser utilizadas enquanto a caldeira ou equipamento não atingir a temperatura de operação.
 A haste da Válvula de Segurança expande consideravelmente com o aumento da temperatura. No caso da válvula estar travada quando do aumento da temperatura, a haste poderá serseriamente danificada, comprometendo o desempenho da válvula.
- É comum Válvulas de Segurança apresentarem problemas causados por aperto excessivo da trava de teste (GAG). Quando necessário utilizá-la, ela deve ser apertada manualmente, sem auxílio de ferramentas, contra a haste da válvula. Isto será suficiente para não permitir aabertura da válvula, quando do aumento da pressão.
- Recomenda-se iniciar os testes pela válvula de maior pressão de abertura. As válvulas de pressões de abertura inferiores à válvula testada deverão permanecer travadas durante os testes.

 Os testes das Válvulas de Segurança em caldeiras podem ser realizados com a unidade on line ou off line. Porém, com a unidade on line em plena carga, uma queda brusca de consumo poderá ser perigosa, pois a maioria das Válvulas de Segurança estariam bloqueadas. Portanto é recomendável testar e ajustar as válvulas com a unidade off line. O controle da unidade pode então ser mantido sem influência externa devido às alterações de carga.

Nota: A SXS recomenda vazão total de vapor durante os testes iniciais.

7.2 Ajustes Iniciais dos Anéis de Regulagem

- As posições dos anéis de regulagem superior (08) e inferior (07) são travadas pelos respectivos parafusos de bloqueio (03) (04). Esses parafusos são rosqueados no corpo da válvula e se encaixam nos respectivos entalhes dos anéis.
 - Para ajustar os anéis, o parafuso correspondente precisa ser removido. Para girar o anel, use uma chave de fenda inserida no orifício do parafuso de bloqueio.
- Sempre trave a Válvula de Segurança durante os ajustes. Isso impede que a ferramenta de ajuste afaste o disco da sede acidentalmente, e impede também que a válvula abra decorrente de uma inesperada elevação de pressão no sistema, colocando em risco o pessoal de serviço.
- Se houver dúvida quanto a posição dos anéis de regulagem, a posição de fábrica poderá ser restaurada como se seque:
 - 1 Trave a válvula (GAG).
 - 2 Remova os parafusos de bloqueio dos anéis superior e inferior (04) (03).
 - 3 Mova o anel superior (08), de modo que a face inferior fique no mesmo nível da face do suporte do disco (Figura 02).

- 4 Consulte a **Tabela 02** para obter onumero de entalhes a serem baixados em função do orifício da válvula (mover no sentido horário).
- 5 Mova o anel inferior (07) para cima (sentido anti-horário) até o contato com a face do suporte do disco (Figura 03).

Orifício	N° de Entalhes			
	Anel Inferior	Anel Superior		
F	13	13		
G	12	13		
Н	13	19		
J	14	13		
K	16	14		
L	20	13		
М	21	14		
N	20	18		
Р	34	25		
Q	28	36		

Tabela 02

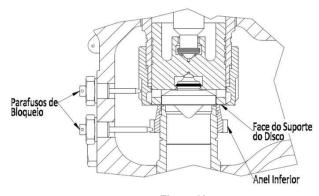


Figura 03

- 6 Abaixar o anel inferior de acordo com o numero de entalhes conforme orifício da válvula, da Tabela 02 (mover em sentido horário), acrescentando-se 01 entalhe para cada 42 bar de pressão de abertura.
- 7 Trave os anéis de ajuste com os respectivos parafusos de bloqueio. Os parafusos de bloqueio não devem se apoiar nos anéis deregulagem.
- 8 Destrave a válvula. A válvula está pronta para o teste com vapor.

7.3 Testes com Vapor

- Válvulas de Segurança de vapor submetidas a níveis de água excessivamente altos, podem apresentar valores de diferencial de alívio (*blowdown*) muito grande, sendo impossível corrigi-lo através do posicionamento dos anéis de regulagem.
- Se uma Válvula de Segurança para vapor superaquecido for ajustada com vapor em baixa temperatura, é aconselhável aumentar o diferencial de alívio (*blowdown*) para compensar a mudança de densidade e outros efeitos térmicos decorrentes da elevação da temperatura do vapor até a temperatura de superaquecimento. A regra é adicionar à pressão de fechamento de ½ a 1% da pressão de abertura para cada 38°C de temperatura de vapor, abaixo da temperatura de superaquecimento.

7.3.1 Procedimentos

7.3.1.2 Eleve a pressão da caldeira ou equipamento a uma razão não maior que 0.14 bar por segundo. Se durante a elevação da pressão, eventualmente a válvula permanecer fechada com a pressão atingindo 2% ou 0,13 barg (adotar o maior valor) acima da pressão de abertura, abra a válvula pela alavanca de teste.

Reduza a pressão da caldeira ou equipamento e execute a etapa **7.3.1.6.1** para ajustar a pressão de abertura. Reinicie o procedimento.

- 7.3.1.3 Registre a pressão em que a válvula abre com ruído característico (pop). Após a abertura, reduza a pressão até o fechamento da válvula. Registre a pressão de fechamento.
- 7.3.1.4 Verifique se a válvula atende aos requisitos do código ASME Seç.I (Tabela 03) quanto a pressão de abertura e diferencial de alívio. A placa de identificação define qual a norma de construção da válvula.

Código de	Pressão de Abertura (PG-72.3)			cial de Alívio * G-73.4.3)
Construção	Pressão de Abertura(bar) Tolerância(+/-)		Pressão de Abertura(bar)	Máximo Diferencial de Alívio(Blowdown)
ASME Sec.I	<= 5,0 0,15 bar		< 5,0	0,30 bar
	> 5,0 e <=21,0	3% **	>= 5,0 e <=17,0	6% ** ***
	>21,0 e <=70,0	0,7 bar	>17,0 e < 25,0	1,1 bar
	>70,0 1% **		>= 25,0	4% ** ***

^{*} O Código ASME Seç.I não mais define os limites máximos do diferencial de alívio (blowdown) para válvulas de produção. No entanto, o código especifica os limites máximos de blowdown durante o teste de certificação. O valor mínimo do blowdown é de 2% para todas as válvulas deste Código.

Tabela 03

^{**} Porcentagem da pressão de abertura.

^{***} O diferencial de alívio das válvulas de uma caldeira, pode ser ajustado para que as válvulas fechem em uma pressão não inferior a pressão de fechamento da válvula de menor pressão de abertura.

- 7.3.1.5 Se a válvula estiver operando de acordo com as exigências do código ASME Seç.I, execute a etapa 7.3.1.6.9.
- 7.3.1.6 Se a válvula estiver em desacordo com as exigências do código construtivo, reduza a pressão da caldeira ou equipamento a aproximadamente 85% da pressão de abertura da válvula. Trave a válvula a ser ajustada.
 - 7.3.1.6.1 Para ajustar a pressão de abertura, solte a porca de bloqueio (25) e gire o parafuso de regulagem (24) 1/6 de volta (60º) em sentido horário para aumentar, ou anti-horário para diminuir a pressão.

Ao testar novamente a válvula anote a alteração verificada para 1/6 de volta. Calcule o número de voltas necessário para ajustar a pressão de abertura no valor desejado caso haja necessidade de reajustar a pressão de abertura. Aperte a porca de bloqueio após posicionar o parafuso de regulagem.

7.3.1.6.2 Se o diferencial de alívio (blowdown) for excessivo, mova o anel superior (08) para cima (sentido anti-horário).

Se o diferencial de alívio for insuficiente, mova-o para baixo (sentido horário).

O anel de regulagem superior deve ser movido 4-6 entalhes por vez.

É possível que o anel superior fique alto demais, impedindo que a válvula atinja seu curso total. Quando isso acontecer, retorne-o para a posição em que o curso total é atingido e finalize o ajuste do diferencial de alívio ajustando o anel inferior (07).

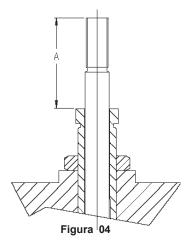
7.3.1.6.3 Mova o anel inferior para baixo (sentido horário) para reduzir o diferencial de alívio e para cima (sentido anti-horário) para aumentar o valor do diferencial de alívio.

O anel inferior deve ser movido 2-3 entalhes por vez. O anel inferior deve ser posicionado o mais baixo possível sem que a válvula produza **simmer** (4.17).

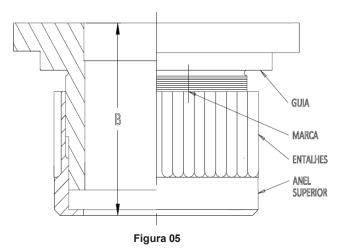
- 7.3.1.6.4 Caso a válvula produza simmer ou não abra com ruído característico (pop), o anel inferior deve ser movido para cima (sentido anti-horário) 2 entalhes por vez, para eliminar o problema.
- 7.3.1.6.5 Ao tentar ajustar o diferencial de alívio(blowdown) em 4%, deve se certificar de que os anéis de regulagem inferior e superior não estejam muito afastados de modo a causar a perda de controle da válvula. A primeira indicação dessa condição é uma trepidação lenta da válvula imediatamente antes do fechamento. Isto ocorrendo, mova um pouco ambos os anéis para baixo (sentido horário), esse ajuste também reduzirá ligeiramente o diferencial de alívio (blowdown). Ao fazer esse ajuste abaixe a anel superior duas vezes mais que o anel inferior.

- 7.3.1.6.6 Destrave a válvula e repita a etapa 7.3.1.1, prosseguindo com os ajustes de acordo com as etapas seguintes, até o atendimento dos requisitos do código ASME Seç.I.
- 7.3.1.6.7 Repita o teste mais duas vezes para verificaçãoda repetibilidade dos valores de pressão de abertura e diferencial de alívio (blowdown), observando um intervalo de 10 minutos entre os testes.
- 7.3.1.6.8 Prossiga os testes com as demais válvulas da caldeira.
- 7.3.1.6.9 Após a finalização dos testes, as válvulas devem ser destravadas e lacradas (ASME Seção I PG-73.2.9 e norma NR-13).

8 Manutenção e Testes


As Válvulas de Segurança SV66H podem ser desmontadas com facilidade para inspeção, manutenção ou troca de peças.

O período para manutenção de cada válvula deve seguir, no mínimo, as exigências da norma NR13 para o equipamento protegido, devendo-se também considerar as características especificas do processo e condições operacionais.


Antes da desmontagem ou retirada da válvula, para execução dos serviços de manutenção, certifique-se de que o equipamento ou a linha de processo estejam despressurizadas.

8.1 Desmontagem:

- **8.1.1** Remova o pino do garfo (39) e saque-o. Solte os parafusos do capuz (30) e retire-o.
- 8.1.2 Remova a cupilha (28) e o disco da alavanca (27).
- **8.1.3** Anote a dimensão **A**, conforme **Figura 04**, essa informação será necessária para, posicionar o parafuso de regulagem **(24)** quando da remontagem da válvula.
- **8.1.4** Solte a porca de bloqueio (25) e gire o parafuso de regulagem (24) em sentido anti-horário para descomprimir totalmente a mola (21).
- **8.1.5** Remova as porcas (23) dos prisioneiros e retire o castelo (22).
- **8.1.6** Remova o conjunto de mola e apoios (21) (20).

8.1.7 Remova o parafuso de bloqueio superior (04). Remova o conjunto haste (19), guia (17), anel de regulagem superior (08), suporte do disco (12) e disco (09), puxando a haste para cima e tomando cuidado para não alterar o posicionamento do anel. Proteja a superfície de vedação do disco. Marque a posição dos entalhes do anel superior em relação à guia e no anel. Anote a dimensão B conforme Figura 05, estes procedimentos ajudarão a posicionar o anel de regulagem superior exatamente na posição em que se encontrava antes da desmontagem.

8.1.8 Remova a guia e o anel de regulagem superior do conjuto. Remova o anel de regulagem superior.

- 8.1.9 Para remover a haste do suporte do disco, apoie o suporte, levante e gire a haste em sentido anti-horário para encaixar as roscas, continue a desrosquear, liberando a haste.
- 8.1.10 Para remover o disco do suporte do disco, apóie o suporte em uma bancada com o disco para cima e introduza duas chaves nos orifícios do suporte do disco (fig. 06), forçando disco para fora do suporte.

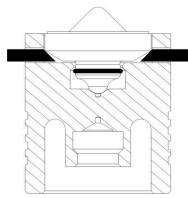


Figura 06

8.1.11 Solte o parafuso de bloqueio inferior (03), afastando-o um pouco do anel de regulagem inferior (07). Coloque um anel de lapidação sobre a superfície de vedação do bocal (06), tomando cuidado para não alterar a posição do anel inferior

Gire o anel de regulagem inferior em sentido anti-horário e conte o número de entalhes que passa na frente do parafuso de bloqueio, até entrar em contato com o anel de lapidação (**Figura 07**). Anote esta informação, pois ela ajudará a posicionar o anel inferior na mesma posição anterior a desmontagem.

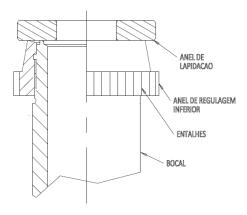
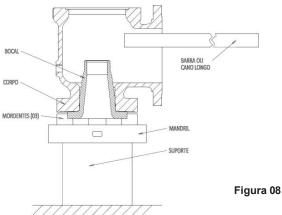
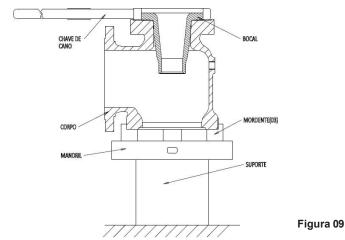




Figura 07

- **8.1.12** Remova o anel de regulagem inferior do bocal.
- 8.1.13 Remova o bocal (06) do corpo (01). O bocal é montado no corpo por meio de rosca direita. Utilizando-se um mandril de 3 ou 4 mordentes, prenda o bocal no mandril e solte-o do corpo utilizando uma barra o cano (Figura 08) e girando o corpo no sentido anti-horário. Tenha cuidado ao utilizar a barra ou cano na conexão de saída da válvula, a fim de garantir que o bocal não seja danificadodurante a operação. Nos casos em que o bocal estiver engripado no corpo, sua remoção pode ser facilitada, aquecendo-se o corpo externamente na área das roscas, enquanto um agente resfriador é aplicado no interior do bocal.

8.1.14 O bocal também poderá ser removido do corpo, utilizando-se uma chave de cano grande (Figura 09).

8.1.15 A válvula está pronta para limpeza e inspeção.

8.2 Limpeza

As peças deverão ser limpas com auxílio de uma lixa e solventes adequados. Durante o processo de limpeza deve-se ter especial atenção com as super- fícies de vedação, superfícies quiadas e com as roscas.

Remova todas as incrustações do corpo (01) e do castelo (22) através de raspagem, escova de aço ou se necessário, jatos abrasivos.

Não é recomendado o uso de jato abrasivo para limpeza das peças internas da válvula.

8.3 Inspeção

Inspecione cuidadosamente cada componentes interno da válvula, observando possíveis defeitos como: trincas, corrosão, desgastes acentuados ou outros de- feitos mecânicos. Para as peças abaixo alguns aspectos devem ser observados:

8.3.1 Bocal (06)

Observe se há cortes, marcas ou outro tipo de dano na superfície de vedação. As roscas do anel de regulagem e de fixação no corpo devem estar em bom estado, sem apresentar escoriações, rasgos ou outros danos. Verifique se o bocal apresenta defeitos como trincas (p/ líquido penetrante) e ou corrosão acentuada. Após a reusinagem, se necessária, e lapidação, verifique a dimensão G (Figura 10). Caso esteja muito danificado, ou a dimensão G for menor que o mínimo indicado na Tabela 04, o bocal deverá ser substituído.

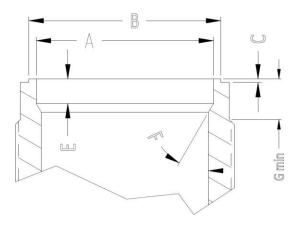


Figura 10

	UNIDADES MÉTRICAS, mm					
Orifício	G Mín.	A + 0,10 - 0,00			E + 0,10 - 0,00	F ± 1/2°
F	5,8	20,7	23,3	0,7	3,0	30º
G	5,8	23,7	26,3	0,7	3,5	30º
Н	8,1	28,5	31,5	0,7	4,0	30º
J	8,5	36,5	39,6	0,7	5,0	30º
K	14,2	43,6	46,8	0,7	6,0	30º
L	14,4	54,3	57,8	0,7	7,4	30º
M	14,2	61,1	64,6	0,7	8,0	30º
N	18,0	67,0	71,0	0,7	9,0	30º
Р	20,3	81,2	85,2	0,9	11,0	30º
Q	27,0	108,3	111,3	0,9	15,3	30º

Tabela 04

8.3.2 Disco (09)

Observe se há cortes, marcas ou outro tipo de dano na superfície de vedação. Verifique se o disco apresenta defeitos como trincas (p/ líquido penetrante) e ou corrosão acentuada. A rosca do suporte do disco deve estar em bom estado, sem apresentar escoriações, rasgos ou outros danos. O disco pode ser reusinado, se necessário, até que a dimensão A (Figura 11) seja reduzida ao mínimo indicado na Tabela 05. A dimensão B é informada para garantir que o disco não seja usinado além do limite. A não observação deste limite resultará em uma mudança significativa na configuração de fluxo do conjunto disco e suporte do disco e resultará em um aumento significativo do simmer (4.17) antes da abertura da válvula.

Caso esteja muito danificado, ou a dimensão B for menor que o mínimo indicado na **Tabela 05**, o disco deverá ser substituído.

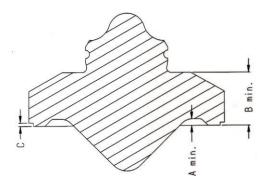


Figura 11

	Disco (Milímetros)					
Orifício	A Mín.	B Mín.	C + 0,1			
F	0,2	7,6	-			
G	1,1	8,9	-			
Н	0,4	8,9	0,7			
J	1,1	11,1	0,7			
K	1,1	12,1	0,7			
L	1,1	15,4	0,7			
М	1,1	17,7	0,7			
N	1,1	15,4	0,7			
Р	1,1	15,4	0,9			
Q	1,1	20,5	0,9			

Tabela 05

8.3.3 **Suporte Disco (12)**

Certifique-se que o diâmetro externo não esteja ovalizado e que a superfície esteja lisa não apresentando marcas ou estrias.

Havendo alguma imperfeição, poderá ser feito um polimento destas superfícies com lixa apropriada. A rosca da haste deve estar em bom estado, sem apresentar escoriações, rasgos ou outros danos. Caso esteja muito danificado, o porta do disco deverá ser substituído.

8.3.4 Guia (17)

Certifique-se que o diâmetro interno da guia não esteja ovalizado, que a superfície esteja lisa não apresentando marcas ou estrias e que as áreas de assentamento das juntas não estejam corroídas. Havendo alguma imperfeição, poderá ser feito um polimento destas superfícies com lixa apropriada.

Caso esteja muito danificada, a guia deverá ser substituída.

Em casos em que a folga entre o diâmetro interno da guia e o diâmetro externo guiado do suporte do disco for maior que a dimensão informada na **Tabela 06**, tanto a guia quanto o porta do disco, devem ser substituídos.

Folga Diametral (mm) Suporte / Guia				
Orifício	Diam. Guiado Suporte Disco Nominal (mm)	Máx.		
F	33	0,28		
G	40	0,28		
Н	50	0,29		
J	58	0,40		
K	72	0,43		
L	90	0,46		
M	101	0,50		
N	111	0,50		
Р	135	0,52		
Q	177	0,67		

Tabela 06

8.3.5 Corpo (01)

Verifique se o corpo apresenta defeitos como trincas (p/ líquido penetrante) e ou corrosão acentuada.

Inspecione as condições das ranhuras do flange de saída quanto à corrosão, rasgos, escoriações ou outros danos. Caso necessário, as ranhuras poderão ser refeitas, observando-se a espessura mínima do flange, definida pela norma de construção da válvula.

As roscas devem estar em bom estado, sem apresentar escoriações, rasgos ou outros danos.

Caso esteja muito danificado, o corpo deverá ser substituído.

8.3.6 Mola (21)

Inspecione a mola quanto a defeitos como trincas (p/ líquido penetrante), corrosão acentuada e empenamentos (paralelismo e perpendicularismo). É recomendado,quando houver dúvidas quanto ao desempenho adequado da

mola, fazer o teste de carga conforme o código ASME Seç.I PG-73.2.3.

A mola e seus apoios devem ser mantidos como um único conjunto. Substitua a mola caso apresente desgaste acentuado.

8.3.7 Haste (19)

Inspecione quanto à empenamentos, corrosão e desgaste.

Caso esteja empenada, a haste deverá ser desempenada antes de ser reutilizada, tomando-se o cuidado de não danificar a superfície de apoio do suporte do disco e as roscas.

8.4 Lapidação

As Válvulas modelo SV66H tem suas superfícies de vedação (bocal e disco) lapidadas através de lapidadora, o que garante as melhores características de vedação. Em serviços de manutenção, caso não disponha de lapidadora, utilize um bloco de ferro fundido ou uma outra superfície perfeitamente plana (Ex.: vidro), usando o método de lapidação convencional (Figura 12).

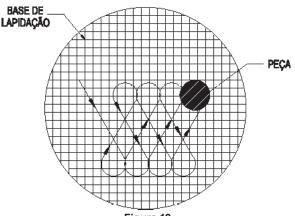


Figura 12

Recomendamos para lapidação, o uso dos seguintes compostos diamantados:

Grana		Função de Lapidação
20 - 40	Micra	Desbaste inicial
10 - 20	Micra	Desbaste rápido e Pré-polimento
6 - 12	Micra	Polimento fino
3 - 6	Micra	Polimento muito fino

Tabela 07

8.5 Montagem

As Válvulas modelo SV66H podem ser remontadas com facilidade, sem a necessidade de utilização de ferramentas especiais. Certifique-se que as peças internas estejam limpas, principalmente as superfícies de vedação e as partes guiadas. Use um lubrificante com propriedades antigripante em todas as roscas e superfícies de apoio.

8.5.1 Instale o bocal (06) no corpo (01). O aperto final deve ser feito no mesmo dispositivo utilizado para a remoção (ver Figura 08, pág.20) e girando-se o corpo no sentido horário. Tenha cuidado ao utilizar a barra ou o cano na conexão de saída da válvula, a fim de garantir que o bocal não seja danificado durante a operação.

- 8.5.2 Instale o anel de regulagem inferior (07) no bocal e o parafuso de bloqueio inferior (03) no corpo. O anel inferior deve ser posicionado utilizando-se o mesmo procedimento e número de entalhes anotado quando da desmontagem da válvula (Ver 8.1.11). Havendo dúvida na posição do anel inferior, a posição de fábrica poderá ser restaurada conforme item 7.2.

 Após o anel estar posicionado, trave-o com o parafuso de bloqueio inferior. Verifique se o anel aceita um pequeno movimento. Isto não ocorrendo é porque o parafuso está comprido demais. Remova-o e esmerilhe um pouco a ponta.
- 8.5.3 Instale o disco (09) no suporte do disco (12). O disco deve encaixar no suporte com força moderada do dedo ou na mão. Não use força excessiva para montar o disco. Virifique se o disco movimenta-se livremente, apoiado no suporte.

mantendo o perfil original, e então reinstale-o.

- **8.5.4** Rosqueie a haste **(19)** no suporte do disco **(12)**. Verifique se o suporte do disco movimenta livremente, apoiado na superfície esférica da haste.
- 8.5.5 Rosqueie o anel de reulagem superior (08) na guia (17), ajuste a posição do anel de acordo com a dimensão anotada a desmontagem (ver 8.1.7). Instale a guia e o anel de regulagem superior no suporte do disco.
- 8.5.6 Instale o conjunto no corpo da válvula apoiando o disco no bocal, tomando cuidado para não danificar as superfícies de vedação. Cuidado para não alterar o posicionamento do anel e de maneira que a marcação feita durante a desmontagem fique voltada para a saída da válvula. Havendo dúvida no posicionamnto do anel superior, a posição da fábrica poderá ser restaurada conforme item 7.2. Após o anel estar posicionado, trave-o com parafuso de bloqueio supeior. Verifique se o anel aceita um pequeno movimento. Isto não ocorrendo é porque o parafuso está comprido demais. Remova-o esmirilhe um puco a ponta, matendo o perfil original, e então reinstale-o.
- 8.5.7 Instale o conjuto mola (21) e apoios (20)
- 8.5.8 Instale o castelo (22), e as porcas (23) dos prisioneiros. Aperte as porcas na sequência recomendada em função número de prisioneiros (Tabela 01, pág. 11), e utilizando os valores de torque recomendado na Tabela 08. Utilize essa mesma tabela para determinar o torque requerido para cada volta da sequência de aperto.

Bitola do	Torque em Nm	Torque requerido por volta de aperto (N			to (Nm)	
prisioneiro	+10% -0%	1º	2°	3₀	4°	5º
7/16"	50	Aperto da chave	12	30	50	50
1/2"	60	Aperto da chave	15	40	60	60
5/8"	70	Aperto da chave	20	45	70	70
3/4"	70	Aperto da chave	20	45	70	70
7/8"	120	Aperto da chave	30	75	120	120

Tabela 08

- 8.5.9 Rosqueie a porca de bloqueio (25) no parafuso de regulagem (24) e instale o conjunto no castelo. Comprima a mola (21) girando o parafuso de regulagem no sentido horário, até que a distância original entre a extremidade da haste e o topo do parafuso de regulagem (Ver 8.1.3), seja alcançada. Este procedimento de comprimir a mola restabelecerá aproximadamente a pressão de regulagem original. A válvula deverá ainda, ser regulada na pressão requerida. Ao comprimir a mola, segure a haste com um alicate para evitar que ela gire no suporte do disco da válvula.
- 8.5.10 A válvula está pronta para regulagem final.

8.6 Teste em Bancada

Embora a regulagem final da válvula possa ser feita nas condições de serviço é recomendado regular a válvula e verificar a estanqueidade da vedação em uma bancada de teste, conforme requisitos do código **ASME Seção I PG-73.5.2(a)** e **PG-73.5.2.1**.

- **8.6.1** A bancada de teste deve dispor de um acumulador (pulmão).
- **8.6.2** A válvula deve ser regulada para abrir na pressão de ajuste (P.AJ) **(4.6)**, indicada na placa de identificação da válvula **(Figura 12).**

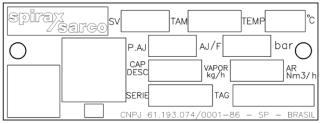


Figura 12

- 8.6.3 O procedimento de teste de Válvulas de Segurança em bancada, deve estar de acordo com o código ASME Seção I PG-73.5.2 e PG-73.5.3.
- 8.6.4 Com fluídos compressíveis, a pressão de abertura é definida como a pressão em que a válvula abre bruscamente (Pop) e não aquela em que começa o vazamento (simmer) (4.17).
- 8.6.5 Antes de instalar a válvula na bancada de teste, remova todos os detritos e partículas, tais como pedaços de juntas ou quaisquer ou- tros materiais sólidos, da bancada de teste e da entrada da válvula. Selecione o manômetro de acordo com a pressão de abertura da válvula, entre 25% a 75% da escala. Certifique-se de que o manômetro está calibrado e dentro do prazo de validade.
- 8.6.6 Instale a válvula na bancada de teste. Se a válvula abrir abaixo da pressão desejada, é necessário comprimir a mola. Segure a haste (19) para evitar que ela gire sobre o suporte do disco e gire o parafuso de regulagem (24) no sentido horário. Se a válvula não abrir na pressão desejada, diminua a pressão da bancada em cerca de 20%, e lentamente diminua a compressão da mola, girando o parafuso de regulagem no sentido anti-horário. Continue o ajuste até a válvula abrir na pressão desejada. Segure a haste enquanto gira o parafuso de regulagem.

A haste da válvula deve ser centralizada com o parafuso de regulagem. O atrito da haste contra as laterais do parafuso de regulagem pode prejudicar o funcionamento da válvula.

- 8.6.7 Caso haja dificuldade de a válvula apresentar o pop (Ver 4.1), em razão de pouco volume disponível na bancada, o anel de regulagem inferior (03) poderá ser erguido (gire no sentido anti-horário) até encostá-lo no suporte do disco, voltando então de 2 a 3 entalhes. Despressurize a bancada para realizar este ajuste. Após os testes reposicione o anel.
- 8.6.8 Verifique se a válvula atende aos requisitos do código ASME Seç.I quanto à pressão de abertura (Tabela 03 Pag.15).
 - **8.6.9** Trave a porca de bloqueio (25) e repita o teste. Pelo menos duas repetições de abertura na mesma pressão devem ser obtidas de modo a ter certeza de que a válvula foi ajustada corretamente.
- 8.6.10 Verifique a estanqueidade da válvula de acordo com o código ASME Seção I PG-7.5.3.
- 8.6.11 Instale o disco da alavanca (27) e trave-a com a cupilha (28), instale o capuz (29) e o garfo (34).
 - **8.6.12** Após os ajustes e verificações em bancada, a válvula está pronta para ser instalada e regulada nas condições de serviço.

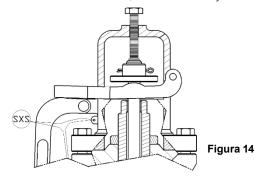
8.6.13 Após a finalização dos ajustes e verificações, as válvula deve ser lacrada (código ASME Seção I PG-73.2.9 e norma NR-13).

Notas:

- A não ser que a capacidade da bancada de teste seja igual ou maior do que a capacidade da válvula, não é possível regular o diferencial de alívio.
 Posicione os anéis de regulagem conforme item 7.2.
- O posicionamento errado dos anéis de regulagem afetará o desempenho correto da válvula.

8.7 Teste na Instalação de Serviço

- **8.7.1** Proceda a instalação da válvula conforme **item 6** deste manual.
- 8.7.2 Regule a válvula, conforme os procedimentos descritos no item7 deste manual.


8.8 Abertura Manual da Válvula (Sob condição de fluxo)

• Toda Válvula de Segurança para aplicação em caldeiras deve dispor de dispositivo de acionamento manual (alavanca de teste), de acordo com o código ASME Seção I PG-73.2.4 Para o acionamento da alavanca de teste, a pressão do sistema deve ser de pelo menos 75% da pressão de abertura (4.6) da válvula. Sob condições de fluxo, o disco (09) deve ser levantado completamente do seu assentamento, de modo que sujeira, sedimento e partículas sólidas não fiquem retidas nas superfícies de vedação. Para permitir o fechamento da válvula solte completamente a alavanca.

8.9 Teste Hidrostático

 Quando forem necessários testes hidrostáticos após a instalação das Válvulas de Segurança, estas devem ser removidas e substituídas por um tampão ou flange cego.
 Caso não seja possível removê-las, deve ser utilizada a trava de teste (GAG) (Figura 14).

É comum Válvulas de Segurança apresentarem problemas causados por aperto excessivo da trava de teste (GAG). Quando necessário utilizá-la, ela deve ser apertada manualmente, sem auxílio de ferramentas, contra a haste da válvula. Isto será suficiente para não permitir a abertura da válvula, durante a realização dos testes hidrostáticos.

9 Resolução de Problemas ——

PALAVRA CHAVE	PROBLEMA	EFEITO	DIAGNÓSTICO	AÇÃO CORRETIVA
			PSV superdimensionada para a instalação Vazão é < 25% que a capacidade requerida	Checar a capacidade requerida, dimensionamento e substituir se for necessário
			Comprimento excessivo da tubulação de entrada	Redimensionar a tubulação de entrada de modo que a queda de pressão seja inferior a 3% da pressão de ajuste
BATIMENTO	CHATTER	DANOS À VÁLVULA	Tubulação de entrada subdimensionada para a PSV	Aumentar a tubulação de entrada de modo que seja maior ou igual a entrada da PSV
			Comprimento excessivo da tubulação da saída Contrapressão Desenvolvida	Redimensionar a tubulação de saída de modo que a contrapressão não se desenvolva
			Tubalação de saída subdimensionada para a PSV Contrapressão desenvovida	Aumentar a tubulação de saída de modo que seja maior ou igual a entrada da PSV
			Má interpretação da plaqueta de identificação da PSV Contrapressão e temperatura	Ajustar na pressão de ajuste à frio informada na plaqueta
			Posição incorreta dos anéis de regulagem Os parafuso de bloqueio podem estar pressionando os anéis de regulagem	Ajustar o anéis de regulagem e encaixar os parafusos de bloqueio nos entalhes do anéis
ABERTURA	PRESSÃO DE ABERTURA INCORRETA	PROCESSO PREJUDICADO DANOS AO VASO DE PRESSÃO E AOS	Internos desalinhados O alinhamento é fundamental para a operação	Desmontar a PSV e inspecionar todos os componentes Se necessário reparar ou substituir
	INCORRETA	COLABORADORES	Porca de bloqueio solta	Ajustar a pressão de abertura e travar aporca de bloqueio
			Manuseio indevido PSV é um instrumento de precisão manuseie com cuidado	Fazer a abertura da PSV uma ou duas vezes para realinhar os internos após o manuseio indevido
			Aumento de pressão Impacto repentino do fluido pode causar abertura prematura da PSV	Aumentar a pressão gradualmente até a pressão de abertura
		Assento da PSV danificado Partículas sólidas podem marcar o assento	Lapidar o assento para restabelecer acabamento apropriado (lapidadora se necessário)	
			Pressão operação muito próxima da pressão de abertura É recomendado diferencial de 10%	Diminuir a pressão de operação para aumentar o diferencial
			Alavanca desalinhada Trava do disco da alavanca pode estar mal posicionada e travando os assentos abertos	Ajustar a porca do disco da alavanca à aproximadamente 1/8" do garfo da alavanca
VAZAMENTO	VAZAMENTO PELA SEDE	PROCESSO PREJUDICADO	Peso excessivo na descarga da válvula Peso externo desalinha a PSV separando os assentos	Suportar a tubulação de descarga
			Montagem horizontal Provoca atrito excessivo na guia	Remontar PSV na vertical para melhorar o alinhamento e o desempenho
			Ajuste dos parafusos de bloqueio Deslocamento dos anéis de regulagem, da sede e suporte do disco.	Verificar o comprimento dos parafusos de bloqueio e alinhar entre os entalhes dos anéis de regulagem
			Internos desalinhados Pode ser causado por forças externas	Desmontar e inspecionar os internos Reparar e substituir se necessário Verificar se a haste está empenada Folga excessiva do apoio de mola Folga excessiva da guia e do suporte Verificar as tensões na tubulação
			Blowdown muito curto	Ajustar os anéis de regulagem Verificar o limite máximo da mola
BLOWDOWN	BLOWDOWN	PROCESSO PREJUDICADO	Blowdown excessivo PSV permanece aberta	Verificar o limite minimo da mola Ajustar os aneis de regulagem - Subir o Anel Superior - Abaixar o Anel Inferior Verificar o limite mínimo da mola Verificar o alinhamento
	SIMMER	RUÍDO	Ajuste do anel de regulagem	Subir o anel inferior

—————Anotações Gerais ———

Filiais de Venda

Porto Alegre

Av. Farroupilha, 3750 SI 301/302 N.Sra.das Graças, Canoas – RS,

CEP: 92025-416 Fone: (11) 99633-9490

E-mail: filial.portoalegre@br.spiraxsarco.com

Belo Horizonte

Rua Guajajaras, 2253 Cj 403 Barro Preto, Belo Horizonte MG,

CEP: 30180-101 Fone: (11) 99633-9490

E-mail:

filial.belohorizonte@br.spiraxsarco.com

Curitiba

Rua Marechal Deodoro, 945 5° andar Centro, Curitiba – PR, CEP: 80060-010

Fone: (11) 99633-9490 E-mail: filial.curitiba@br.spiraxsarco.com

São Paulo Interior

Rua Visconde de Inhaúma, 490 Sala 1101 – Centro, Ribeirão Preto – SP,

CEP: 14025-100 Fone: (11) 99633-9490

E-mail: filial.spinterior@br.spiraxsarco.com

São Paulo Capital

Estr. Manoel Lages do Chão, 268 - Jardim Caiapia, Cotia - SP, CEP: 06705-050

Fone: (11) 99633-9490

E-mail: filial.spcapital@br.spiraxsarco.com

Salvador

Rua João Chagas Ortins de Freitas, 577 -Ed. Mais Empresarial, Sala 515 -Buraquinho - Lauro de Freitas - Bahia CEP 42.710-610

Fone: (11) 99633-9490

E-mail: filial.salvador@br.spiraxsarco.com

Rio de Janeiro

Av. Pastor Martin Luther King Jr, 126 Sala 905 – 9° andar Office 1000 - Shopping Nova América, Rio de Janeiro, RJ, CEP:20765-000

Fone: (11) 99633-9490

E-mail: filial.riodejaneiro@br.spiraxsarco.com

Recife

Rua Ribeiro de Brito, 830 Cj. 203 Boa Viagem, Recife – PE, CEP: 51021-310

Fone: (11) 99633-9490

E-mail: filial.recife@br.spiraxsarco.com

Filial Fronteiras

Estr. Manoel Lages do Chão, 268

Jardim Caiapia, Cotia - SP, CEP: 06705-050

Fone: (11) 99633-9490

E-mail: filial.fronteiras@br.spiraxsarco.com

