

SP7-10, SP7-11 e SP7-12 Posicionador digital

Guia rápido

- 1. Informações de segurança
- 2. Instalação
- 3. Aprovações
- 4. Declaração de conformidade

1. Informações de segurança

A operação segura desses produtos só pode ser garantida se eles forem instalados, colocados em serviço, usados e mantidos corretamente por pessoal qualificado (consulte o manual de instalação SP7-10, SP7-11 e SP7-12 IM-P706-02) de acordo com as instruções de operação. Instruções de segurança e de instalação para tubulação e construção da planta, bem como a correta utilização de ferramentas e equipamentos de segurança deverão ser seguidos.

Ao longo do documento SP7-1* é indicado onde as informações são relevantes para todas as versões; o SP7-10, SP7-11 e SP7-12. Onde a informação for específica, ela será referenciada como a versão apropriada

Aviso sobre proteção à prova de explosão

Certifique-se de que a unidade está sendo usada e instalada em conformidade com regulamentos sobre dispositivos à prova de explosão locais, regionais e nacionais.

- Consulte "Aprovações"
- A "Interface de comunicação local (LCI)" do SP7-1* só pode ser usada fora da área com risco de explosão com Um ≤ 30 VCC.
- O posicionador tipo SP7-1* só pode ser operado com gases do grupo IIA e classe de temperatura T1
 como fonte de energia auxiliar em aplicações externas ou dentro de edifícios com ventilação suficiente.
- O gás de alimentação deve estar livre de ar e oxigênio, e desde que não possa ocorrer nenhuma atmosfera explosiva, os gases de exaustão devem sempre sair.
- O equipamento só pode ser usado como dispositivo do tipo II 2 D em áreas onde o nível de risco mecânico seja "baixo".
- Devem ser usadas entradas de cabos que atendam aos requisitos da EN 61241-11 para Categoria II 2
 D, bem como a faixa de temperatura ambiente.
- Evite a carga eletrostática devido à propagação da descarga da escova quando o equipamento for usado para aplicações que envolvam poeira combustível.

2. Instalação

Os operadores devem usar proteção auricular ao colocar o posicionador em serviço

2.1 Medição e faixas de operação do posicionador

Faixa de operação para atuadores lineares:

A faixa de operação para atuadores lineares é de ± 45° simetricamente ao eixo longitudinal. A amplitude útil dentro da faixa de operação é de pelo menos 25° (figura recomendada 40°). A amplitude útil não precisa necessariamente ser simétrica ao eixo longitudinal.

Faixa de operação dos atuadores rotativos:

A amplitude útil é de 90°, que deve estar inteiramente dentro da faixa de medição, mas não precisa necessariamente ser simétrica ao eixo longitudinal.

Observação

Durante a instalação, certifique-se de que o curso do atuador ou o ângulo de rotação para feedback de posição sejam implementados corretamente.

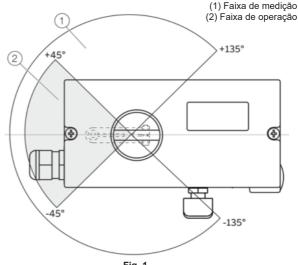
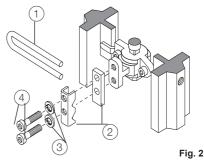



Fig. 1

2.2 Instalação de um guia seguidor ao atuador

- 1. Aperte bem os parafusos à mão
- 2. Fixe o quia seguidor (1) e as placas de fixação (2) com parafusos (4) e arruelas de pressão (3) na haste do atuador.

SP7-10, SP7-11 e SP7-12 Posicionador digital

2.3 Alavanca de montagem e suporte no posicionador

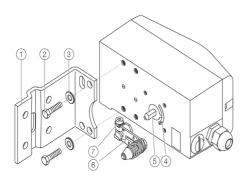


Fig. 3

Observação

Os furos roscados de montagem do posicionador e os furos do suporte dependem do tipo de atuador usado. Selecione de acordo, para garantir que o pino-guia tenha movimento livre no guia seguidor ao longo de todo o curso da válvula.

- Fixe a alavanca (6) ao eixo de feedback (5) do posicionador (só pode ser montado em uma posição devido ao formato de corte do eixo de feedback).
- Usando as setas (4), verifique se a alavanca se move dentro da faixa de operação (entre as setas).
- 3. Aperte manualmente o parafuso (7) na alavanca.
- 4. Segure o posicionador preparado (com o suporte de montagem 1 ainda solto) no atuador de modo que o pino de arraste da alavanca entre no guia seguidor para determinar quais orifícios no posicionador devem ser usados para o suporte de montagem.
- Fixe o suporte de montagem (1) com os parafusos (2) e arruelas (3) usando os orifícios correspondentes na caixa do posicionador.

Aperte os parafusos tão uniformemente quanto possível para garantir a linearidade subsequente.

Alinhe o suporte de montagem no orifício oblongo para garantir que a faixa de operação seja simétrica.

Ajuste o curso médio da válvula e alinhe a alavanca na horizontal (item 6 fig. 3).

Em seguida, aperte o parafuso de montagem (item 4 fig. 4) (a alavanca se move entre as marcas de seta item 4 fig. 3).

2.4 Montagem em uma Torre Fundida

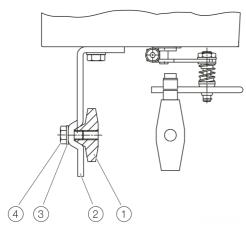
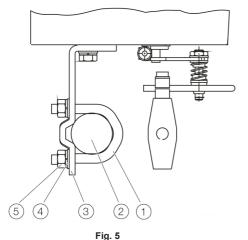



Fig. 4

1. Fixe o suporte de montagem (2) com parafuso (4) e arruela (3) na Torre (1).

2.5 Montagem em uma Torre com colunas circulares

- montagem.
- Insira os parafusos em U (1) do interior da coluna (2) através dos orifícios do suporte de

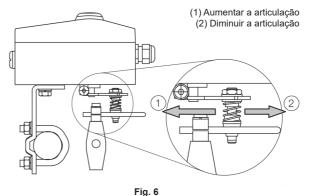
Segure o suporte de montagem (3) na posição

- 3. Adicione as arruelas (4) e porcas (5).
- Aperte bem as porcas.

correta na coluna (2).

Observação

Ajuste a altura do posicionador na Torre de ferro fundido ou com colunas circulares até que a alavanca esteja na horizontal (realizando uma verificação visual) na metade do curso da válvula.


2.6 Articulação do posicionador

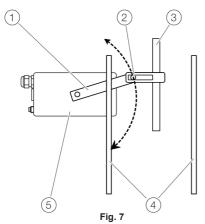
A escala na alavanca indica os pontos de articulação para as várias faixas de curso da válvula

Mova o parafuso com o pino-quia no orifício oblongo da alavança para ajustar a faixa de curso da válvula à faixa de trabalho do sensor de posição.

Mover o ponto de conexão para dentro aumenta o ângulo de rotação do sensor. Mover o ponto de conexão para fora reduz o ângulo de rotação do sensor.

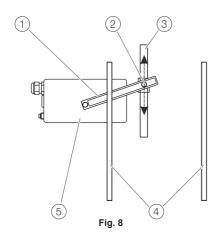
Ajuste o curso do atuador para usar o maior ângulo de rotação possível (simétrico em torno da posição central) no sensor de posição.

Faixa recomendada para atuadores lineares: -28 a 28°


Ângulo mínimo: 25°

Observação Após a montagem, verifique se o posicionador está operando dentro da faixa de medição.

2.7 Posição do parafuso do atuador


O parafuso do atuador para mover a alavanca do potenciômetro pode ser montado permanentemente na própria alavanca ou na haste da válvula. Dependendo do método de montagem, quando a válvula se move, o parafuso do atuador executa um movimento circular ou linear em relação ao centro de rotação da alavanca do potenciômetro. Selecione a posição do parafuso escolhida no menu HMI para garantir uma linearização ideal. A configuração padrão é parafuso do atuador na alavanca

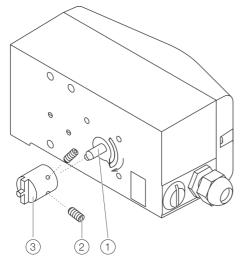
2.8 Parafusos do atuador na alavanca (vista traseira)

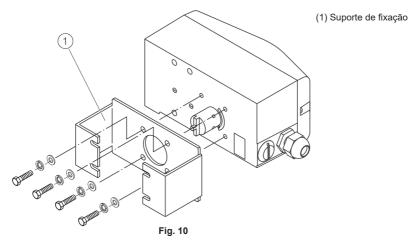
- 1 Alavanca do potenciômetro
- 2 Parafusos do atuador 3 Haste da válvula
- 4 Garfo da válvula
- 5 Posicionador

2.9 Parafusos do atuador na válvula (vista traseira)

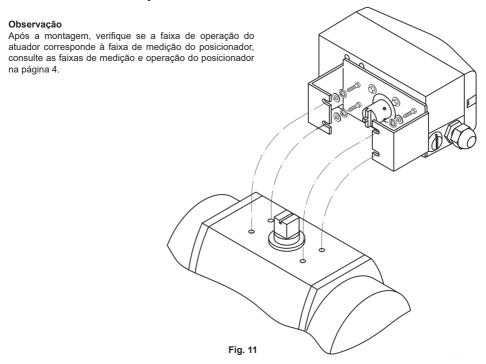
- Alavanca do potenciômetro
- 2 Parafusos do atuador
- 3 Haste da válvula
- 4 Garfo da válvula
- 5 Posicionador

2.10 Montagem do adaptador no posicionador



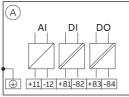

Fig. 9

- Determine a posição de montagem (paralela ao atuador ou em ângulo de 90°).
- Calcule a direção de rotação do atuador (direita ou esquerda).
- 3. Mova o atuador rotativo para a posição inicial.
- 4. Pré-ajuste o eixo de feedback.


Para garantir que o posicionador funcione dentro da faixa de operação (consulte as faixas de medição e operação do posicionador na página 4), a posição de montagem, bem como a posição básica e o sentido de rotação do atuador devem ser considerados ao determinar a posição do adaptador no eixo 1. Para isso, o eixo de feedback pode ser ajustado manualmente para que o adaptador 3 possa ser fixado na posição correta.

 Coloque o adaptador na posição correta no eixo de feedback e prenda com os pinos roscados 2. Um dos pinos roscados deve ser travado no lado plano do eixo de feedback.

2.11 Parafusando o suporte de fixação no posicionador


2.12 Parafusando o posicionador no atuador

2.13 Conexões elétricas

Conexão elétrica da unidade de controle do posicionador SP7-10

A Dispositivo básico

Terminal	Função/comentários
+11/-12	Entrada analógica
+81/-82	Entrada binária DI
+83/-84	Saída binária DO2

2.13.1 Saída binária

Apenas para dispositivos com comunicação HART. Saída configurável como saída de alarme por software. Saída binária DO

Terminais	+83/-84
Tensão de alimentação (circuito de controle de acordo com DIN 9234/NAMUF	R) 5 a 11 Vcc
Saída '0 lógico'	> 0,35 mA a < 1,2 mA
Saída '1 lógico'	> 2,1 mA
Direção de ação	Configurável '0 lógico' ou '1 lógico'

2.14 Conexão no dispositivo

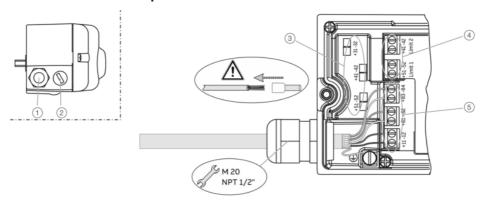


Fig. 12

- 1 Prensa cabos
- 2 Plugue cego
- 3 Terminais para módulos opcionais
- 4 Kit de fixação de terminal para feedback digital
- 5 Terminais para unidade básica

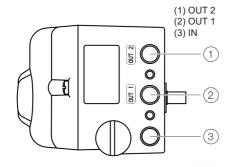
2 furos de $\frac{1}{2}$ 14 NPT ou M20 × 1,5 são fornecidos no lado esquerdo da caixa para entrada de cabos. Um dos furos para derivação está equipado com um prensa cabos, enquanto o outro para derivação possui um plugue cego.

Observação

Os terminais de conexão são fornecidos fechados e devem ser desparafusados antes de inserir o fio.

- 1. Descasque os fios em aproximadamente 6 mm (0,24 pol.).
- 2. Conecte os fios aos terminais de conexão de acordo com o diagrama de conexão.

sarco


2.15 Conexões pneumáticas

Informações sobre atuadores de dupla ação com mecanismo de retorno por mola

Em atuadores de dupla ação com mecanismo de retorno por mola, uma pressão que excede significativamente o valor da pressão de alimentação de ar pode ser gerada durante a operação pelas molas na câmara oposta às molas. Isso pode danificar o posicionador ou afetar adversamente o controle do atuador.

Para eliminar a possibilidade de que isso ocorra, recomenda-se instalar uma válvula de compensação de pressão entre a câmara sem mola e o ar de alimentação para esses tipos de aplicações. Ela permite que o aumento da pressão seja transferido de volta para a linha de entrada de ar.

A pressão de abertura da válvula de retenção deve ser < 250 mbar (< 3,6 psi).

Marcação Conexão de tubo		
IN	Alimentação de ar, pressão 1,4 a 6 bar (20 a 90 psi)	
OUT1	Pressão de saída para o atuador	
OUT2	Pressão de saída para o atuador (2). (Conexão com atuador de dupla ação)	

Una as conexões dos tubos de acordo com a designação, observando os seguintes pontos:

- Todas as conexões de tubulação pneumática estão localizadas no lado direito do posicionador. Orifícios roscados de ¼ 18 NPT são fornecidos para as conexões pneumáticas. O posicionador é rotulado de acordo com os furos disponíveis.
- Recomendamos que você use um tubo com dimensões de 12 × 1,75 mm.
- A pressão de alimentação de ar necessária para aplicar a força de atuação deve ser ajustada em linha com a pressão de saída no atuador. A faixa de operação do posicionador está entre 1,4 a 6 bar (20 a 90 psi).

Fornecimento de ar de instrumento*

Pureza	Tamanho máximo de partícula: 5 μm Densidade máxima de partícula: 5 mg/m³
Teor de óleo Concentração máxima a 1 mg/m³	
Ponto de orvalho de pressão	10 K abaixo da temperatura operacional
Pressão de alimentação**	Projeto padrão: 1,4 a 6 bar (20 a 90 psi)
Consumo de ar***	< 0,03 kg/h/0,015 scfm

- * Livre de óleo, água e poeira de acordo com DIN/ISO 8573-1. Poluição e teor de óleo de acordo com a Classe 3:3:3
- ** Não exceda a pressão máxima de saída do atuador
- *** Independente da pressão de alimentação

2.16 Colocação em serviço do posicionador

- 1. Abra a fonte de alimentação pneumática.
- 2. Ligue a alimentação elétrica e alimente o sinal do ponto de ajuste de 4 a 20 mA.
- 3. Verificação da montagem mecânica:
 - Pressione e segure MODE; além disso, pressione SETA PARA CIMA ou SETA PARA BAIXO até que o modo de operação 1.3 (ajuste manual na faixa de medição) seja exibido. Solte MODE.
 - Pressione SETA PARA CIMA ou SETA PARA BAIXO para mover o atuador para a posição final mecânica; verifique as posições finais; o ângulo de rotação é exibido em graus; para o modo de alta velocidade, pressione SETA PARA CIMA ou SETA PARA BAIXO simultaneamente.

2.17 Faixa de ângulo de rotação recomendada

Atuadores lineares	-28 a 28°
Atuadores rotativos	-57 a 57°
Ângulo mínimo	25°

4. Execute o ajuste automático de acordo com o ajuste automático padrão.

A colocação em serviço do posicionador agora está completa e o dispositivo está pronto para operação.

2.18 Ajuste automático padrão

Nota: O ajuste automático padrão nem sempre resulta em condições de controle ideais.

Ajuste automático padrão para atuadores lineares*

- 1. Pressione e segure MODE até ADJ_LIN ser exibido.
- 2. Pressione MODE e segure até que a contagem regressiva termine.
- 3. Solte MODE; isso inicia o ajuste automático.

Ajuste automático padrão para atuadores rotativos*

- 1. Pressione ENTER e segure até ADJ_ROT ser exibido.
- 2. Pressione ENTER e segure até que a contagem regressiva termine.
- 3. Solte ENTER; isso inicia o ajuste automático.

Se o ajuste automático for bem-sucedido, os parâmetros serão armazenados automaticamente e o posicionador voltará ao modo de operação 1.1.

Se ocorrer um erro durante o ajuste automático, o processo será encerrado com uma mensagem de erro.

Execute as seguintes etapas se ocorrer um erro:

 Pressione e segure o botão de operação SETA PARA CIMA ou SETA PARA BAIXO por aproximadamente três segundos

A unidade mudará para o nível de operação, modo 1.3 (ajuste manual dentro da faixa de medição).

 Verifique a montagem mecânica de acordo com a seção Montagem mecânica na página 14 e repita o ajuste automático padrão.

^{*} A posição zero é determinada automaticamente e salva durante o ajuste automático padrão, no sentido anti-horário (CTCLOCKW) para atuadores lineares e no sentido horário (CLOCKW) para atuadores rotativos.

3. Aprovações

ATEX

Classificação: ATEX II 2 G Ex ib IIC T6, T4...T1 Gb Número de certificação: TÜV 21 ATEX 295206 X Temperatura ambiente: T6: -40 °C < Ta < 40 °C T4... T1: -40 °C < Ta < 85 °C

IECEx

Classificação: IECEx Ex ib IIC T6, T4...T1 Gb Número de certificação: IECEx TUN 21.0019X Temperatura ambiente: T6: -40 °C < Ta < 40 °C T4...T1: -40 °C < Ta < 85 °C

CCC/NEPSI

Classificação: NEPSI EX ib IIC T4/T6 Gb Número de certificação: GYJ22.1767X Temperatura ambiente: T4: -40 °C < Ta < 85 °C T6: -40 °C < Ta < 40 °C

INMETRO

Classificação: INMETRO Ex ib IIC T6, T4 ... T1 Gb Número de certificação: TÜV 25.1034 X Temperatura ambiente: $T6: -40\ ^{\circ}\text{C} < T_{amb} < 40\ ^{\circ}\text{C}$ $T4...\ T1: -40\ ^{\circ}\text{C} < T_{amb} < 85\ ^{\circ}\text{C}$

4. Declaração de conformidade

spiraxsarco.com

EU DECLARATION OF CONFORMITY

Apparatus model/Product: Smart Positioners

SP7-10 SP7-11 SP7-12

Name and address of the manufacturer or his

authorised representative:

Spirax Sarco Ltd, Runnings Road

Cheltenham GL51 9NQ United Kingdom

This declaration of conformity is issued under the sole responsibility of the manufacturer.

The object of the declaration described above is in conformity with the relevant Union harmonisation legislation:

2014/30/EU EMC Directive 2014/34/EU ATEX Directive

References to the relevant harmonised standards used or references to the other technical specifications in relation to which conformity is declared:

EMC Directive EN 61326-1:2013

ATEX Directive EN IEC 60079-0:2018

EN 60079-11:2012

Where applicable, the notified body:

Notified Body	number	Performed	Certificate
Element Materials Technology	2812	Issue of Quality Assurance Notification	TRAC13QAN0002
Rotterdam B.V. Voorerf 18, 4824 GN			
Breda Netherlands			
TÜV NORD CERT GmbH	0044	Issue of EC Type examination certificate	TÜV 21 ATEX
Am TÜV 1, 30519 Hannover			295206 X
Cermany			

Additional information:

II 2 G Ex ib IIC T6, T4 ... T1 Gb

Signed for and on behalf of: Spirax Sarco Ltd,

(signature):

(name, function): M Sadle

Head of Engineering Steam Business Development

(place and date of issue): Cheltenham

2022-03-14

GNP237-EU-C/04 issue 1 (EN)

Page 1/25